首页> 外文期刊>Expert systems with applications >Neural ordinary differential grey model and its applications
【24h】

Neural ordinary differential grey model and its applications

机译:神经常规差分灰色模型及其应用

获取原文
获取原文并翻译 | 示例

摘要

Due to the efficiency of grey models in predicting the time series of small samples, grey system theory has been well studied since it was first proposed and has now become an important method for small sample prediction. Inspired by the neural ordinary differential equations (NODE), this paper proposes a novel grey forecasting model called the neural ordinary differential grey model (NODGM). The NODGM model includes a novel whitening equation that allows the prediction model to be learned through a training procedure. Therefore, compared with other models whose structures and terms need to be artificially predefined based on the laws of real samples, the NODGM model has a wider application range and can learn the characteristics of different data samples. Then, to obtain a model with better prediction performance, we apply NODE to train the model. Finally, the predicting sequence is obtained by using the Runge-Kutta method to solve the model. In the experiments, we apply NODGM model to two energy samples and then contrast the experimental results with the results of some classical grey models to validate the effectiveness of NODGM model. The comparison results from predicting China's annual crude oil consumption and forecasting oilfield production in northern China show that the prediction accuracies achieved by NODGM model are 28% and 8% higher, respectively, than those achieved by the state-of-the-art grey forecasting models.
机译:由于灰色模型在预测小样本的时间序列中的效率,灰色系统理论得到了很好的研究,因为它首先提出并现在成为小样本预测的重要方法。本文提出了一种神经普通微分方程(节点)的启发,提出了一种称为神经常规差分灰色模型(NoDGM)的新型灰色预测模型。 NodGM模型包括一种新的美白方程,其允许通过训练过程学习预测模型。因此,与其他模型相比,其结构和术语需要基于真实样本的定律人工预定义的,NodGM模型具有更广泛的应用范围,并且可以学习不同数据样本的特征。然后,要获得具有更好预测性能的模型,我们将节点应用于培训模型。最后,通过使用径g-Kutta方法来求解模型来获得预测序列。在实验中,我们将NodGM模型应用于两个能量样本,然后将实验结果与一些经典灰色模型的结果进行造影,以验证NodGM模型的有效性。预测中国年度原油消费和预测油田生产的比较结果表明,小政数模型实现的预测准确性分别比通过最先进的灰色预测所实现的目标增长28%和8%楷模。

著录项

  • 来源
    《Expert systems with applications》 |2021年第9期|114923.1-114923.7|共7页
  • 作者单位

    Chongqing Univ Posts & Telecommun Coll Comp Chongqing 400065 Peoples R China|Chongqing Univ Posts & Telecommun Chongqing Key Lab Image Cognit Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Coll Comp Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Image Cognit Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Image Cognit Chongqing 400065 Peoples R China;

    Chongqing Univ Posts & Telecommun Chongqing Key Lab Comp Intelligence Chongqing 400065 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Grey system; NODGM; Neural network; Energy prediction;

    机译:灰色系统;nodgm;神经网络;能量预测;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号