首页> 外文期刊>Expert systems with applications >Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems
【24h】

Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems

机译:基于可靠性预测的改进的动态重量粒子群优化和后传播神经网络在工程系统中

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the problem of low accuracy of reliability prediction, a back propagation neural network (BPNN) model is developed. In the process of reliability prediction, a dynamic weight particle swarm optimization-based sine map (SDWPSO) method including a novel inertial weight update strategy is developed. This new strategy introduced a linear decreasing parameter in the sine-map, which enables particles to perform a fine search at a very low speed in the later stage of the search and greatly improves the convergence speed of the algorithm. Furthermore, a hybrid model named SDWPSO-BPNN is created to improve the reliability prediction accuracy in engineering systems. The proposed SDWPSO approach is compared with four algorithms using fourteen benchmark functions to verify the effectiveness. The experimental results indicate that SDWPSO has a better search ability than the other algorithms. Then, the hybrid SDWPSO-BPNN is applied to predict the reliability of turbocharger and industrial robot systems, respectively. The obtained results manifest that the SDWPSO-BPNN is more powerful than that of SVM and ANN methods for reliability prediction in engineering.
机译:针对可靠性预测精度低的问题,开发了反向传播神经网络(BPNN)模型。在可靠性预测过程中,开发了一种动态重量粒子群优化的基于优化的正弦图(SDWPSO)方法,包括新的惯性权重更新策略。这种新策略在正弦图中引入了线性减少参数,其使粒子能够在搜索的后期以非常低的速度执行精细搜索,并且大大提高了算法的收敛速度。此外,创建了一个名为SDWPSO-BPNN的混合模型,以提高工程系统中的可靠性预测精度。建议的SDWPSO方法与使用四个基准函数的四种算法进行比较,以验证有效性。实验结果表明,SDWPSO具有比其他算法更好的搜索能力。然后,应用Hybrid SDWPSO-BPNN以分别预测涡轮增压器和工业机器人系统的可靠性。所获得的结果表明,SDWPSO-BPNN比工程中可靠性预测的SVM和ANN方法更强大。

著录项

  • 来源
    《Expert systems with applications》 |2021年第9期|114952.1-114952.13|共13页
  • 作者单位

    Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin 300401 Peoples R China|Hebei Univ Technol Sch Mech Engn Tianjin 300401 Peoples R China|Natl Engn Res Ctr Technol Innovat Method & Tool Tianjin 300401 Peoples R China|Inst Phys & Chem Engn Nucl Ind Sci & Technol Particle Transport Separat Lab Tianjin 300180 Peoples R China;

    Hebei Univ Technol Sch Mech Engn Tianjin 300401 Peoples R China;

    Hebei Univ Technol Sch Mech Engn Tianjin 300401 Peoples R China;

    Hebei Univ Technol Sch Mech Engn Tianjin 300401 Peoples R China;

    Hebei Univ Technol Sch Mech Engn Tianjin 300401 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Reliability prediction; Particle swarm optimization; Back propagation neural network; Industrial robots; Turbochargers;

    机译:可靠性预测;粒子群优化;背传播神经网络;工业机器人;涡轮增压器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号