首页> 外文期刊>Expert systems with applications >Interpretable collaborative data analysis on distributed data
【24h】

Interpretable collaborative data analysis on distributed data

机译:分布式数据的可解释的协作数据分析

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an interpretable non-model sharing collaborative data analysis method as a federated learning system, which is an emerging technology for analyzing distributed data. Analyzing distributed data is essential in many applications, such as medicine, finance, and manufacturing, due to privacy and confidentiality concerns. In addition, interpretability of the obtained model plays an important role in the practical applications of federated learning systems. By centralizing intermediate representations, which are individually constructed by each party, the proposed method obtains an interpretable model, achieving collaborative analysis without revealing the individual data and learning models distributed between local parties. Numerical experiments indicate that the proposed method achieves better recognition performance than individual analysis and comparable performance to centralized analysis for both artificial and real-world problems.
机译:本文提出了一种可解释的非模型共享协作数据分析方法作为联合学习系统,是一种用于分析分布式数据的新兴技术。 分析分布式数据在许多应用中是必不可少的,例如医学,金融和制造,由于隐私和保密性问题。 此外,所获得的模型的可解释性在联合学习系统的实际应用中起着重要作用。 通过集中由每个方单独构建的中间表示,所提出的方法获得可解释的模型,实现协作分析,而不会揭示当地各方之间分布的各个数据和学习模型。 数值实验表明,该方法比个人分析和可比性分析的识别性能更好地实现了人为和现实世界问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号