首页> 外文期刊>Expert systems with applications >Towards zero shot learning of geometry of motion streams and its application to anomaly recognition
【24h】

Towards zero shot learning of geometry of motion streams and its application to anomaly recognition

机译:走向零射击运动流的几何学及其在异常识别中的应用

获取原文
获取原文并翻译 | 示例

摘要

Visual anomaly recognition (VAR) is the core part of many intelligent systems. However, vagueness in definitions and lack of a priori knowledge about the distribution of anomalies make VAR a challenging problem. Supervised solutions often fail to work in such scenarios due to a lack of ability to adapt with concept drifts. To this end, we have studied the effect of temporal derivatives over differential manifolds for designing a zero-shot (label agnostic) VAR solution. The rationale behind this work is leveraging the genericity and discriminative representation available in the geometric-structure of motion-tensors. Our approach proceeds by drawing segments of temporal-derivatives from raw image-sequences and projecting them over Grassmann product space before clustering. Suitability of the proposed approach is corroborated with extensive experiments and comparisons with other arts.
机译:视觉异常识别(VAR)是许多智能系统的核心部分。 然而,定义中的含糊不清,缺乏关于异常分布的先验知识使var成为一个具有挑战性的问题。 由于缺乏适应概念漂移的能力,监督解决方案通常无法在这种情况下工作。 为此,我们研究了时间衍生物在差动歧管上设计用于设计零射(标签不可知)var溶液的效果。 这项工作背后的理由正在利用运动张量的几何结构中提供的常见性和辨别表现。 我们的方法通过从原始图像序列绘制时间衍生物的段绘制并在聚类前将它们投射到Grassmann产品空间。 所提出的方法的适用性是通过广泛的实验和与其他艺术的比较进行证实。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号