首页> 外文期刊>Expert systems with applications >A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start
【24h】

A case study of batch and incremental recommender systems in supermarket data under concept drifts and cold start

机译:概念漂移下超市数据中批量和增量推荐系统的案例研究和冷启动

获取原文
获取原文并翻译 | 示例

摘要

Recommender systems uncover relationships between users and items, thus allowing personalized recommendations. Nonetheless, users? preferences may change over time, the so-called concept drifts; or new users and items may appear, making the recommender system unable to accurately map the relationship between users and items due to the cold start problem. Consequently, concept drift and cold start are challenges that downgrade the recommender system?s predictive performance. This paper assesses existing approaches for collaborativefiltering recommender systems over a real supermarket dataset that exhibits both of the issues mentioned above. For this purpose, our comparative analysis encompasses batch and streaming learning approaches. As a result, we can observe that streaming-based models achieve better recommendation rates since these are tailored to fit the concept drift. More specifically, the predictive performance of streaming-based recommendations increases by up to 21% over those provided by batch methods. The supermarket dataset used in experimentation is also made publicly available for future studies and recommender systems comparisons.
机译:推荐系统揭示用户和项目之间的关系,从而允许个性化的建议。尽管如此,用户呢?偏好可能随时间变化,所谓的概念漂移;或者可以出现新用户和项目,使推荐系统无法准确地映射由于冷启动问题导致的用户和项目之间的关系。因此,概念漂移和冷启动是降级推荐系统的挑战的预测性能。本文评估了在展示上述两项问题的真正超市数据集中的协作滤除推荐系统的现有方法。为此,我们的比较分析包括批量和流媒体学习方法。因此,我们可以观察到基于流式的模型实现更好的推荐率,因为这些是适合概念漂移的速度。更具体地,基于流的建议的预测性能在由批次方法提供的那些提供的那些中增加了高达21%的。在实验中使用的超市数据集也公开可用于未来的研究和推荐系统比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号