首页> 外文期刊>Expert systems with applications >Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning
【24h】

Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning

机译:利用深度学习,通过X射线CT扫描的语义分割对会议梨的非破坏性内部疾病检测

获取原文
获取原文并翻译 | 示例

摘要

Long term storage is required to deliver high quality pear fruit year-round. Under suboptimal storage conditions, internal disorders, such as internal browning and cavity formation, can develop and are often invisible from the outside. We present a non-destructive inspection method to quantify internal disorders in X-ray CT scans of pear fruit using a deep neural network for semantic segmentation. Herein, a U-net based model was trained to automatically indicate healthy tissue, core and regions affected by internal disorders, i.e., cavity formation and internal browning. The quantitative data resulting from the segmentations was used to measure the severity of internal disorders. Excellent classification accuracies of 99.4 and 92.2% were obtained for the classification of ?consumable? vs ?non-consumable? fruit on the one hand and ?healthy? vs ?defect but consumable? vs ?nonconsumable? fruit on the other hand. The identification of ?defect but consumable? fruit showed to be the most difficult.
机译:长期存储设备才能提供高质量的水果梨全年。在次优的储存条件下,内部障碍,如内部褐变和空洞形成,可以开发和通常从外部不可见的。我们提出了一种非破坏性的检查方法来量化梨果的X射线CT扫描内部障碍使用语义分割深神经网络。在此,基于U型网络模型被训练自动指示健康组织,芯和受内部障碍区域,即,空洞形成和内部褐变。从分割得到的量化数据被用于测量内部障碍的严重程度。对吗?耗材分类获得的99.4和92.2%,优秀的分类准确度? VS?非消耗?水果一方面是和?健康吗? VS?缺陷,而是消费品? VS?非消耗性?水果另一方面。的?缺陷,但耗材的鉴定?果显示是最困难的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号