首页> 外文期刊>Expert systems with applications >Symbiotic organisms search algorithm using random walk and adaptive Cauchy mutation on the feature selection of sleep staging
【24h】

Symbiotic organisms search algorithm using random walk and adaptive Cauchy mutation on the feature selection of sleep staging

机译:共生生物在睡眠分段特征选择上使用随机步行和自适应Cauchy突变的搜索算法

获取原文
获取原文并翻译 | 示例

摘要

Sleep staging can objectively evaluate sleep quality to effectively assist in preventing and diagnosing sleep disorder. Because of the multi-channel and multi-model characteristics of physiological signals, high-dimensional features cannot be avoided when studying sleep staging. High-dimensional features are often mixed with redundant and irrelevant features, which may decrease the accuracy of classifiers and increase the computational cost. Feature selection can remove redundant and irrelevant features but is considered a challenging task in machine learning. Therefore, feature selection can be regarded as a multi-objective optimization problem. In this paper, the proposed symbiotic search algorithm (RCSOS), which is based on random walk and adaptive Cauchy mutation, can improve the optimization performance of the original algorithm. A binary version of RCSOS is proposed according to the twenty transformation functions. Then, the proposed algorithm is applied to feature selection in sleep staging. To validate the performance and generalization of the algorithm, seven groups of data from two different datasets were tested. Compared with the state-of-art algorithms, the proposed binary version of the RCSOS algorithm performs best on feature selection of sleep staging.
机译:睡眠分期可以客观地评估睡眠质量,有效地帮助预防和诊断睡眠障碍。由于生理信号的多通道和多模型特征,在研究睡眠暂存时,不能避免高维特征。高维特征通常与冗余和无关的功能混合,这可能降低分类器的准确性并提高计算成本。功能选择可以消除冗余和无关的功能,但在机器学习中被认为是一个具有挑战性的任务。因此,特征选择可以被视为多目标优化问题。本文拟议的共生搜索算法(RCSOS),基于随机步行和自适应CAUCHY突变,可以提高原始算法的优化性能。根据二十个转换函数提出了一种二进制版本的RCSO。然后,将所提出的算法应用于睡眠暂存中的特征选择。为了验证算法的性能和泛化,测试了来自两个不同数据集的七组数据。与最先进的算法相比,RCSOS算法的建议二进制版本在睡眠暂存的特征选择上表现最佳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号