首页> 外文期刊>Expert systems with applications >A cellular automata approach to local patterns for texture recognition
【24h】

A cellular automata approach to local patterns for texture recognition

机译:一种蜂窝自动机识别局部模式的方法

获取原文
获取原文并翻译 | 示例

摘要

Texture recognition is one of the most important tasks in computer vision and, despite the recent success of learning-based approaches, there is still need for model-based solutions. This is especially the case when the amount of data available for training is not sufficiently large, a common situation in several applied areas, or when computational resources are limited. In this context, here we propose a method for texture descriptors that combines the representation power of complex objects by cellular automata with the known effectiveness of local descriptors in texture analysis. The method formulates a new transition function for the automaton inspired by local binary descriptors. It counterbalances the new state of each cell with the previous state, in this way introducing an idea of "controlled deterministic chaos". The descriptors are obtained from the distribution of cell states. The proposed descriptors are applied to the classification of texture images both on benchmark data sets and a real-world problem, i.e., that of identifying plant species based on the texture of their leaf surfaces. Our proposal outperforms other classical and state-of-the-art approaches, especially in the real-world problem, thus revealing its potential to be applied in numerous practical tasks involving texture recognition at some stage.
机译:纹理识别是计算机愿景中最重要的任务之一,尽管最近基于学习的方法取得了成功,但仍需要基于模型的解决方案。尤其如此,当培训的数据量没有足够大,在几个应用区域中的常见情况,或者计算资源有限时。在这种情况下,这里我们提出了一种纹理描述符的方法,该方法将复杂对象的表示功率通过蜂窝自动机与纹理分析中的本地描述符的已知有效性相结合。该方法制定了由局部二进制描述符启发的自动机的新转换功能。它通过前一个状态抵消了每个单元的新状态,以这种方式引入了“受控确定性混乱”的想法。描述符从小区状态的分布获得。所提出的描述符适用于基准数据集和实际问题的纹理图像的分类,即基于叶面纹理识别工厂物种的分类。我们的提案优于其他经典和最先进的方法,特别是在现实世界问题中,从而揭示其在某些阶段涉及纹理识别的许多实用任务的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号