首页> 外文期刊>Expert systems with applications >Utilizing 3D joints data extracted through depth camera to train classifiers for identifying suicide bomber
【24h】

Utilizing 3D joints data extracted through depth camera to train classifiers for identifying suicide bomber

机译:利用深度摄像机提取3D关节数据以培训用于识别自杀炸弹的分类器

获取原文
获取原文并翻译 | 示例

摘要

Safety and security of humans is an important concern in every aspect. With the advancement in engineering, sciences, and technology (unfortunately) new methods to harm humans have also been introduced. At the same time, scientists are paying attention to the security aspects by developing new software and hardware gadgets. In comparison to the system level security, the safety/security of human beings is more important. Suicide bombing is one such nuisance that is still an open challenge for the world to detect before it is triggered. This work deals with the identification of a suicide bomber using a 3D depth camera and machine learning techniques. This work utilizes the skeletal data provided by the 3D depth camera to identify a bomber wearing a suicide jacket. The prediction is based on real-time 3D posture data of the body joints obtained through the depth camera. Using a comprehensive experimental design, a dataset is created consisting of 20 joints information obtained from 120 participants. The dataset records this for each of the participants with and without wearing a suicide jacket. Experiments are performed with the suicide jacket bearing 10- to 20-kg weight. Simulations are performed using 3D spatial features of the participants & rsquo; body in four ways: full body joints (20 joints), upper-half of the body (above the spine base of the skeleton), 20 joints with 15 frames, and 20 joints with 20 frames. It is observed that 15 to 20 frames are sufficient to identify a suspected suicide bomber. The proposed framework utilize four classifiers to identify vulnerability of a subject to be a suicide bomber. Results show that the proposed framework is capable of identifying a suicide bomber with an average accuracy of 92.30%.
机译:人类的安全和安保是在各方面一个重要的问题。凭借在工程,科学和技术的进步(不幸)也已经引入了新的方法来伤害人类。与此同时,科学家们正在通过开发新的软件和硬件工具关注的安全方面。相较于系统级的安全,人的安全/安全性更重要。自杀式爆炸是一个这样的公害仍然是一个开放的挑战被触发之前,世界上被检测到。这项工作涉及使用3D深度相机和机器学习技术一个自杀式袭击者的身份。这项工作利用由3D深度相机提供识别袭击者身穿自杀式夹克骨架数据。所述预测是基于通过深度相机获得的身体关节的实时三维姿态数据。使用全面实验设计,创建了一个数据集由来自120名参与者获得20个关节信息。 DataSet的记录这对于每个和不穿外套自杀的参与者。实验与自杀套轴承10至20公斤的重量进行。仿真所使用的参与者&rsquo的三维空间特征进行;体在四种方式:全身关节(20个关节中),所述主体的上半部(上述骨架的脊柱基),20个与接头15帧,和20个与接头20帧。可以观察到,15至20帧就足够了以识别可疑的自杀炸弹。拟议的框架使用四种分类,以确定对象的漏洞是一个自杀式炸弹袭击者。结果表明,所提出的框架能够识别与92.30%的平均精度的自杀炸弹的。

著录项

  • 来源
    《Expert systems with applications》 |2021年第10期|115081.1-115081.18|共18页
  • 作者单位

    Ghulam Ishaq Khan Inst Engn Sci & Technol Machine Intelligence Res Grp MInG Topi 23460 Pakistan;

    Ghulam Ishaq Khan Inst Engn Sci & Technol Machine Intelligence Res Grp MInG Topi 23460 Pakistan;

    Beijing Univ Technol Fac Informat Technol Engn Res Ctr Intelligent Percept & Autonomous Con Beijing 100124 Peoples R China|Ghulam Ishaq Khan Inst Engn Sci & Technol Topi 23460 Pakistan;

    Beijing Univ Technol Fac Informat Technol Engn Res Ctr Intelligent Percept & Autonomous Con Beijing 100124 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bomber identification; Task analysis; Predictive models; Data models;

    机译:轰炸机识别;任务分析;预测模型;数据模型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号