首页> 外文期刊>Expert systems with applications >Evolutionary algorithm hybridized with local search and intelligent seeding for solving multi-objective Euclidian TSP
【24h】

Evolutionary algorithm hybridized with local search and intelligent seeding for solving multi-objective Euclidian TSP

机译:进化算法与本地搜索和智能播种杂交,用于解决多目标欧几里德TSP

获取原文
获取原文并翻译 | 示例

摘要

Multi-objective Euclidian TSP (ETSP) has several practical applications such as mobile computing and maritime surveillance. This problem has complexity not only in terms of combinatorial constraints but also in terms of multiple objectives. The local heuristic-based algorithms are extremely efficient in solving the single-objective ETSPs. However, their efficacy is limited in solving the multi-objective ETSPs due to the presence of multiple objectives. To bridge this gap, a two-stage evolutionary algorithm (TSEA) is developed to solve multi-objective ETSPs. In this algorithm, the first stage involves the use of a hybrid local search evolutionary algorithm (HLS-EA) which incorporates the local heuristic of nearest neighbor and 2-opt in the framework of real-coded NSGA-II to solve the individual objectives of multi-objective ETSP. These individual single-objective solutions which represent the corner solutions of the Pareto optimal front are used in the second stage as seed solutions in seeded HLS-EA (SHLS-EA) for solving the corresponding multi-objective ETSP. The developed algorithm is tested on 17 two-objective, 6 three-objective, and 2 four-objective ETSPs to show the superior performance over multiobjective variants of the Lin-Kernighan algorithm. Also, the developed algorithm is compared with several variants of DE and GA to illustrate the superior performance over the variants of evolutionary algorithms. Further, the algorithm is extended to the multi-objective ETSPs up to 10,000 cities.
机译:多目标欧几里德TSP(ETSP)有几种实际应用,如移动计算和海上监控。此问题不仅在组合限制方面具有复杂性,而且在多个目标方面具有复杂性。基于当地的基于启发式的算法在解决单一目标ETSPS方面非常有效。然而,由于多目标存在,它们的功效受到限制在解决多目标ETSPS。为了弥合这种差距,开发了一种两级进化算法(TSEA)以解决多目标ETSPS。在该算法中,第一阶段涉及使用混合本地搜索进化算法(HLS-EA),该算法(HLS-EA)包含最近邻居的当地启发式,在实际编码的NSGA-II框架中使用2-OPT以解决个人目标多目标ETSP。这些代表Pareto最佳前部的角溶液的单个单目标解决方案在第二阶段中使用作为种子HLS-EA(SHLS-EA)的种子溶液,用于求解相应的多目标ETSP。开发算法在17个双目标,6个三目标和2个四个目标ETSPS上进行测试,以显示Lin-Kernighan算法的多目标变体的卓越性能。此外,将开发的算法与DE和GA的几种变体进行了比较,以说明对进化算法的变体的优越性。此外,该算法扩展到高达10,000个城市的多目标ETSPS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号