首页> 外文期刊>Expert systems with applications >An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals
【24h】

An experimental methodology to evaluate machine learning methods for fault diagnosis based on vibration signals

机译:基于振动信号评估机器学习方法的实验方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a systematic procedure to fairly compare experimental performance scores for machine learning methods for fault diagnosis based on vibration signals. In the vast majority of related scientific publications, the estimated accuracy and similar performance criteria are the sole quality parameter presented. However, the experimental design giving rise to these results is mostly biased, based on unacceptably simple validation methods and on recycling identical patterns in test data sets, previously used for training. Moreover, the methods in general overfit their hyperparameters, introducing additional overoptimistic results. In order to remedy this defect, we critically analyse the usual training-validation-test division and propose an algorithmic guideline in the form of a validation framework. This allows a well defined comparison of experimental results. In order to illustrate the ideas of the paper, the Case Western Reserve University Bearing Data benchmark is used as a case study. Four distinct classifiers are experimentally compared, under gradually more difficult generalization tasks using the proposed evaluation framework: K-Nearest-Neighbor, Support Vector Machine, Random Forest and One-Dimensional Convolutional Neural Network. An extensive literature review suggests that most vibration based research papers, particularly for the Case Western Reserve University Bearing Data, use similar patterns for training and testing, making their classification an easy task.
机译:本文提出了一种系统的程序,可根据振动信号进行公平地比较机器学习方法的实验性能分数。在绝大多数相关的科学出版物中,估计的准确性和类似的性能标准是赠送的唯一质量参数。然而,基于不可接受的简单验证方法以及以前用于训练的测试数据集中回收相同模式,实验设计主要偏置。此外,普遍过度填写的方法,介绍了额外的过度优化结果。为了解决这个缺陷,我们批判性地分析了通常的训练验证 - 测试部门,并以验证框架的形式提出算法指南。这允许实验结果的良好定义比较。为了说明论文的思想,案例西方储备大学轴承数据基准被用作案例研究。使用所提出的评估框架逐渐更加困难的泛化任务,进行了四种不同的分类器:K到最近的邻居,支持向量机,随机森林和一维卷积神经网络。广泛的文献综述表明,大多数基于振动的研究论文,特别是对于案例西部储备大学轴承数据,使用类似的模式进行培训和测试,使其分类变得简单。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号