首页> 外文期刊>Expert systems with applications >An unsupervised orthogonal rotation invariant moment based fuzzy C-means approach for the segmentation of brain magnetic resonance images
【24h】

An unsupervised orthogonal rotation invariant moment based fuzzy C-means approach for the segmentation of brain magnetic resonance images

机译:一种无监督的正交旋转不变时刻基于基于脑磁共振图像分割的模糊C型方法

获取原文
获取原文并翻译 | 示例

摘要

Brain magnetic resonance images (MRI) suffer from many artifacts such as noise and intensity inhomogeneity. Moreover, they contain an abundant amount of fine image structures, edges, and corners in various areas of the image. These anomalies and structural complexities affect the segmentation process of the brain MRI which is required by physicians for the diagnosis purpose. Recently, we have proposed a local Zemike moment (LZM)-based unbiased nonlocal means fuzzy C-means (LZM-UNLM-FCM) approach that has dealt with the noise artifact in the moment domain using the LZM approach. The method provides high segmentation results for the MR images corrupted with Rician noise. However, the method does not deal with the intensity inhomogeneity artifact effectively. Moreover, the method uses a regularization parameter that needs to be adjusted to obtain effective segmentation results. This paper presents an unsupervised local Zemike moment and unbiased nonlocal means-based bias corrected fuzzy C-means (LZM-UNLM-BCFCM) approach that deals with both noise and intensity inhomogeneity artifacts. The main concept behind the proposed method is to use the attractive properties of the LZMs to effectively filter the image by determining a large number of similar regions in an MR image which is mostly corrupted by Rician noise and intensity inhomogeneity. The ability of the LZMs to determine such regions in MR images consisting of fine tissue structures in any orientation is well utilized for dealing with the high levels of noise. The intensity inhomogeneity is removed by estimating the bias field pixel-by-pixel during the segmentation process using the filtered image without the use of regularization parameter. The bias field is estimated as a linear combination of the orthogonal polynomials in which the weights are obtained by minimizing the fuzzy objective function. Experimental results on both simulated and real MR images show the superiority of the proposed method as compared to other unsupervised state-of-the-art approaches.
机译:脑磁共振图像(MRI)遭受许多诸如噪声和强度不均匀性的伪影。此外,它们在图像的各个区域中包含丰富量的细图像结构,边缘和角。这些异常和结构复杂性影响了医生为诊断目的所要求的脑MRI的分割过程。最近,我们提出了一种基于局部Zemike时刻(LZM)的非偏见的非局部意味着使用LZM方法处理瞬间域中的噪声伪影的模糊C-MEAR(LZM-UNLM-FCM)方法。该方法为MR图像损坏的方法提供了高分性的结果。然而,该方法不有效地处理强度不均匀性伪影。此外,该方法使用需要调整的正则化参数以获得有效的分段结果。本文介绍了一个无人监督的本地Zemike时刻和基于非偏见的非识别性的偏置校正校正模糊C-mance(LZM-UNLM-BCFCM)方法,涉及噪声和强度的不均匀性伪影。所提出的方法背后的主要概念是利用LZMS的吸引力来通过确定MR图像中的大量类似区域来有效地过滤图像,这主要被瑞典噪声和强度不均匀地损坏。 LZMS以在任何方向上由任何方向上的细胞结构组成的MR图像中的这种区域的能力很好地利用了处理高水平的噪声。通过在不使用正则化参数的情况下,通过在不使用正则化参数的情况下,通过在分段处理期间估计偏置场像素 - 逐个像素来除去强度不均匀性。偏置字段被估计为正交多项式的线性组合,其中通过最小化模糊目标函数来获得权重。与其他无监督的最新方法相比,模拟和真实MR图像上的实验结果表明了所提出的方法的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号