首页> 外文期刊>Expert systems with applications >CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach
【24h】

CSFCM: An improved fuzzy C-Means image segmentation algorithm using a cooperative approach

机译:CSFCM:一种使用合作方法的改进的模糊C型图像分割算法

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy c-means (FCM) is one of the most widely used classification algorithms specially in image segmentation. Like any algorithm, FCM has some drawbacks such as the choice of the number of clusters and the cluster's center initialization. In this work, we propose new approaches to deal with these two drawbacks. We propose for the first problem two approaches. The first proposed approach exploits neural networks and the Xie and Beni index, while the second one exploits the histogram. Concerning the second problem, we propose a new metaheuristics cooperation approach using the Genetic Algorithm (GA), Biogeography Based Algorithm(BBO), and Firefly Algorithm (FA). This cooperation is managed by a multi-agent system allowing to determine automatically the fittest metaheuristics parameters. Finally, we propose to use a histogram-based version of FCM to reduce the execution time of the algorithm. Experimental results show that our proposed approach improves the performance of the basic FCM algorithm and outperforms other methods proposed in the literature.
机译:模糊C-Means(FCM)是图像分割中最广泛使用的分类算法之一。与任何算法一样,FCM具有一些缺点,例如选择群集数量和群集的中心初始化。在这项工作中,我们提出了对处理这两个缺点的新方法。我们为第一个问题提出了两种方法。第一个提出的方法利用神经网络和XIE和Beni指数,而第二个方法利用直方图。关于第二个问题,我们提出了一种新的遗传算法(GA),生物地基算法(BBO)和萤火虫算法(FA)的新的综合学合作方法。这种合作由多种代理系统管理,允许自动确定Fittest Metaheuristics参数。最后,我们建议使用基于直方图的FCM版本来减少算法的执行时间。实验结果表明,我们所提出的方法提高了基本FCM算法的性能,并优于文献中提出的其他方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号