首页> 外文期刊>Expert systems with applications >Trust modeling based on probabilistic linguistic term sets and the MULTIMOORA method
【24h】

Trust modeling based on probabilistic linguistic term sets and the MULTIMOORA method

机译:基于概率语言术语集的信任建模及多型永大方法

获取原文
获取原文并翻译 | 示例

摘要

Trust modeling has attracted wide attention in different domains and served as the basis for decision-making under different contexts. Building a robust and effective trust model that considers various trust-related characteristics remains an enormous challenge. This report proposes a multi-criteria group decision-making based (MCGDM) trust evaluation model. We generalize our work from three aspects, which are trust metric, trust evaluation, and decision-making. First, we utilize the extension of the hesitant fuzzy linguistic term sets (HFLTS), called probabilistic linguistic term sets (PLTS), as our trust scaling method, which is a very suitable tool to describe the decision maker's opinions when they are hesitant about their judgments and intend to depict their evaluation information using several linguistic terms with corresponding probability. Second, In the process of trust evaluation, trust is decomposed into multiple trustworthiness facets with different importance degrees defined by the trustor, and a structural evaluation framework is established to evaluate the trustworthiness of each alternative. The unique properties of trust are also considered comprehensively. Specifically, the properties involve the subjectivity and context-sensitivity of trust in particular application scenarios, the hesitancy and uncertainty of decision-makers in expressing their assessment opinions, similarity between the trustor and the recommenders, and the dynamic reliability of the provided opinions. Finally, in the decision-making process, we adopt the Multi-Objective Optimization by Ratio Analysis (MULTIMOORA) method, which is a robust decisionmaking method that simultaneously fuses three subordinate orders to derive the final ranking. The experimental results demonstrate the effectiveness and accuracy compared with the other method.
机译:信任建模在不同的域中引起了广泛的关注,并作为不同背景下决策的基础。建立一个强大而有效的信任模式,考虑各种与信任相关的特征仍然是一个巨大的挑战。本报告提出了一种基于多标准组决策(MCGDM)信任评估模型。我们将我们的工作概括为三个方面,这是信任度量,信任评估和决策。首先,我们利用犹豫不决的模糊语言术语集(HFLT)的扩展,称为概率语言术语集(PLTS),作为我们的信任缩放方法,这是一个非常合适的工具来描述决策者在他们对他们犹豫不决的情况下的意见判断并打算将其评估信息描述使用具有相应概率的多种语言术语。其次,在信任评估过程中,信任被分解成具有信任者定义的不同重要程度的多个可靠性面,建立了结构评估框架来评估每个替代方案的可信度。信任的独特属性也被全面地考虑。具体而言,该特性涉及信任的主体性和情境敏感性,特别是在特定应用方案,决策者犹豫不决和不确定性在表达他们的评估意见,信托人与推荐人之间的相似性以及提供的意见的动态可靠性。最后,在决策过程中,我们采用了比率分析(MultiMoora)方法的多目标优化,这是一种强大的决策方法,同时融合三个从属订单来导出最终排名。实验结果表明了与其他方法相比的有效性和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号