首页> 外文期刊>Expert systems with applications >Enhancing polymer electrolyte membrane fuel cell system diagnostics through semantic modelling
【24h】

Enhancing polymer electrolyte membrane fuel cell system diagnostics through semantic modelling

机译:通过语义建模增强聚合物电解质膜燃料电池系统诊断

获取原文
获取原文并翻译 | 示例

摘要

Polymer electrolyte membrane fuel cells (PEMFC) are a promising technology for economic and environmentally friendly energy production. However, they haven't reached their full potential in the market yet as only few reliable PEMFC systems have successfully passed the prototyping face. A drawback of the current diagnostic tools is that only a select few are of high genericity, reliability and can perform efficiently on-line at the same time. Furthermore, there is only limited research identifying both PEMFC stack faults and ancillary system faults simultaneously. While none of the existing tools can be interrogated by the end-user. In this research, we develop novel artificial intelligence-based technologies to overcome these existing barriers, i.e., (i) a semantically enriched integrating schema (ontology) of the overall operation and structure of the PEMFC that allows automatic inference engines to automatically deduce fault detection; (ii) a knowledge-based, light-weight, on-line fuel cell system diagnosis (FuCSyDi) platform. FuCSyDi detects and provides the location of failures by considering only the data from the reliable sensors. Additionally, it provides the reasons underpinning any forthcoming failures and enables the end-user to interrogate the platform for further information regarding its operation and structure. Our platform is validated by performing tests against common automotive stress conditions. This innovative approach enhances the reliability of the fuel cell system diagnosis and, hence, its lifetime performance. (C) 2020 Published by Elsevier Ltd.
机译:聚合物电解质膜燃料电池(PEMFC)是经济和环保能源生产的有希望的技术。但是,他们还没有达到市场的全部潜力,但只有很少的可靠的PEMFC系统已成功传递原型脸部。目前诊断工具的缺点是只有选择少量高,可靠性高,并且可以同时在线上有效地执行。此外,只有有限的研究识别PEMFC堆栈故障和辅助系统故障同时。虽然最终用户无法询问现有工具。在这项研究中,我们开发了新颖的人工智能技术,克服了这些现有的障碍,即(i)PEMFC的整体操作和结构的语义富集的集成模式(本体论),允许自动推理发动机自动推断出故障检测; (ii)基于知识的轻量级,在线燃料电池系统诊断(FUCSYDI)平台。 FUCSYDI通过仅考虑来自可靠传感器的数据来检测和提供故障的位置。此外,它提供了支撑任何即将到来的失败的原因,并使最终用户能够询问平台,以获取有关其操作和结构的进一步信息。我们的平台通过对普通汽车压力条件进行测试来验证。这种创新方法提高了燃料电池系统诊断的可靠性,从而提高了其寿命性能。 (c)2020由elestvier有限公司发布

著录项

  • 来源
    《Expert systems with applications》 |2021年第1期|113550.1-113550.20|共20页
  • 作者单位

    Loughborough Univ Sch Mech Elect & Mfg Engn Epinal Way Loughborough LE11 3TU Leics England;

    Loughborough Univ Sch Business & Econ Epinal Way Loughborough LE11 3TU Leics England;

    Loughborough Univ Sch Business & Econ Epinal Way Loughborough LE11 3TU Leics England;

    Loughborough Univ Sch Aeronaut & Automot Engn Epinal Way Loughborough LE11 3TU Leics England;

    Loughborough Univ Sch Aeronaut & Automot Engn Epinal Way Loughborough LE11 3TU Leics England;

    Loughborough Univ Sch Aeronaut & Automot Engn Epinal Way Loughborough LE11 3TU Leics England;

    Univ Sci & Technol China Sch Engn Sci Hefei 230027 Peoples R China;

    Loughborough Univ Sch Mech Elect & Mfg Engn Epinal Way Loughborough LE11 3TU Leics England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    PEMFC; Semantic technologies; System monitoring; Ontology Based Data Access; Diagnostic system;

    机译:PEMFC;语义技术;系统监控;基于本体的数据访问;诊断系统;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号