首页> 外文期刊>Expert systems with applications >Enhancing credit scoring with alternative data
【24h】

Enhancing credit scoring with alternative data

机译:使用替代数据增强信用评分

获取原文
获取原文并翻译 | 示例

摘要

Hundreds of millions of people in low-income economies do not have a credit or bank account because they have insufficient credit history for a credit score to be ascribed to them. In this paper we evaluate the predictive accuracy of models using alternative data, that may be used instead of credit history, to predict the credit risk of a new account. Without alternative data, the type of data that is typically available is demographic data. We show that a model that contains email usage and psychometric variables, as well as demographic variables, can give greater predictive accuracy than a model that uses demographic data only and that the predictive accuracy is sufficiently high for the demographic and email data to be used when conventional credit history data is unavailable. The same applies if merely psychometric data is included together with demographic data. However, we show that different randomly selected training: test sample splits give a wide range of predictive accuracies. In the second part of the paper, using two datasets that include only email usage as a predictor, we compare the predictive performances of a wide range of machine learning and statistical classifiers. We find that some classifiers applied to these alternative predictors give sufficiently accurate predictions for these variables to be used when no other data is available. (C) 2020 Elsevier Ltd. All rights reserved.
机译:低收入经济体中数以亿计的人没有信用或银行账户,因为他们的信用评分的信用历史不足以归咎于他们。在本文中,我们评估了使用替代数据的模型的预测准确性,可以使用代替信用历史,以预测新帐户的信用风险。没有替代数据,通常可用的数据类型是人口统计数据。我们表明,包含电子邮件使用和心理变量以及人口变量的模型可以提供比仅使用人口统计数据的模型更大的预测精度,并且预测精度足够高,以便使用要使用的人口统计和电子邮件数据传统的信用历史记录数据不可用。如果仅包括人口统计数据,则相同适用。但是,我们表明不同的随机选择的培训:测试样品分裂提供广泛的预测精度。在本文的第二部分中,使用两个数据集仅包括电子邮件使用作为预测因子,我们比较广泛的机器学习和统计分类器的预测性能。我们发现应用于这些替代预测器的一些分类器给出了在没有其他数据没有其他数据时要使用的这些变量的足够准确的预测。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Expert systems with applications》 |2021年第1期|113766.1-113766.12|共12页
  • 作者单位

    Univ Edinburgh Business Sch Credit Res Ctr 29 Bucceleuch Pl Edinburgh EH8 9JS Midlothian Scotland;

    Univ Edinburgh Business Sch Credit Res Ctr 29 Bucceleuch Pl Edinburgh EH8 9JS Midlothian Scotland;

    Univ Edinburgh Business Sch Credit Res Ctr 29 Bucceleuch Pl Edinburgh EH8 9JS Midlothian Scotland;

    Univ Edinburgh Business Sch Credit Res Ctr 29 Bucceleuch Pl Edinburgh EH8 9JS Midlothian Scotland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Credit scoring; Alternative data; Banking risk;

    机译:信用评分;替代数据;银行风险;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号