首页> 外文期刊>Expert Systems with Application >Genetic programming-based learning of texture classification descriptors from Local Edge Signature
【24h】

Genetic programming-based learning of texture classification descriptors from Local Edge Signature

机译:基于遗传编程的纹理分类描述符从本地边缘签名学习

获取原文
获取原文并翻译 | 示例

摘要

Describing texture is a very challenging problem for many image-based expert and intelligent systems (e.g. defective product detection, people re-identification, abnormality investigation in medical imaging and remote sensing applications ... ) since the process of texture classification relies on the quality of the extracted features. Indeed, detecting and extracting features is a hard and time-consuming task that requires the intervention of an expert, notably when dealing with challenging textures. Thus, machine learning-based descriptors have emerged as another alternative to deal with the difficulty of feature extracting. In this work, we propose a new operator, which we named Local Edge Signature (LES) descriptor, to locally represent texture. The proposed texture descriptor is based on statistical information on edge pixels' arrangement and orientation in a specific local region, and it is insensitive to rotation and scale changes. A genetic programming-based approach is then fitted to automatically learn a global tex ture descriptor that we called Genetic Texture Signature (GTS). In fact, a tree representation of individuals is used to generate global texture features by applying elementary operations on LES elements at a set of keypoints, and a fitness function evaluates the descriptors considering intra-class homogeneity and interclass discrimination properties of their generated features. The obtained results, on six challenging tex ture datasets (Brodatz, Outex_TC_00000, Outex_TC_00013, KTH-TIPS, KTH-TIPS2b and UIUCTex), show that the proposed classification method, which is fully automated, achieves state-of-the-art performance, especially when the number of available training samples is limited. (c) 2020 Elsevier Ltd. All rights reserved.
机译:描述了许多基于图像的专家和智能系统(例如有缺陷的产品检测,人们重新识别,医学成像和遥感应用的异常调查......)以来,这是一个非常具有挑战性的问题,因为纹理分类过程依赖于质量提取的特征。实际上,检测和提取特征是一种艰难而耗时的任务,需要专家的干预,特别是在处理具有挑战性的纹理时。因此,基于机器学习的描述符被出现为另一种替代方案来处理特征提取的难度。在这项工作中,我们提出了一个新的运算符,我们命名为本地边缘签名(LES)描述符,以在本地代表纹理。所提出的纹理描述符基于关于边缘像素的布置和在特定局部区域中的方向的统计信息,并且对旋转和比例改变不敏感。然后,基于遗传编程的方法将自动学习我们称之为遗传纹理签名(GTS)的全球Tex Ture描述符。实际上,通过在一组关键点上应用LES元素对LES元素上的基本操作来生成全局纹理特征,并且适合函数评估考虑其生成特征的类内同一性和跨附类的歧视性的描述符。获得的结果,在六个具有挑战性的TEX TURE数据集(BRODATZ,OUTEX_TC_00000,OUTEX_TC_00013,KTH-TIPS,KTH-TIPS2B和UIUCTEX),显示了完全自动化的所提出的分类方法,实现了最先进的性能,特别是当可用培训样本的数量有限时。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号