首页> 外文期刊>Expert systems with applications >Ranking multiple-input and multiple-output units: A comparative study of data envelopment analysis and rank aggregation
【24h】

Ranking multiple-input and multiple-output units: A comparative study of data envelopment analysis and rank aggregation

机译:排名多输入和多输出单元:数据包络分析和等级聚集的比较研究

获取原文
获取原文并翻译 | 示例

摘要

Ranking multiple-input and multiple-output units is a critical problem that arises in a broad range of disciplines. While various methods have been proposed and applied, their comparative strengths and weaknesses are not well understood. In this paper, we assess and compare two popular methods, data envelopment analysis (DEA) and heuristic rank aggregation approach (i.e., the Borda method), in the context of ranking multiple-input and multiple-output units. Both methods exploit the output-input ratios, but in different ways. The Borda method sorts the units by taking the arithmetic average of the ranks in terms of individual output-input ratios, whereas DEA ranks the units based on composite output-input ratios. We use simulations to compare Borda rank aggregation and six DEA models, including CCR (Charnes, Cooper, Rhodes), super-efficiency CCR, BCC (Banker, Charnes, Cooper), super-efficiency BCC, SBM (slacks-based measure), and super-efficiency SBM. The simulations are based on Cobb-Douglas and translog production functions with both single output and multiple outputs. We show that the heuristic Borda rank aggregation, though simple to implement, performs better than DEA models for Cobb-Douglas production function under three situations: small sample size, relatively balanced weights for production factors, and presence of multiple outputs. For translog production function, the Borda method generally performs better than the CCR model, but cannot match up to other DEA models. We also demonstrate the performance of different methods via application to the well-known problem of ranking countries by human development. Our research sheds light on the potential of rank aggregation to complement or even supplant DEA under certain conditions. (c) 2020 Elsevier Ltd. All rights reserved.
机译:排名多输入和多输出单元是广泛的学科中出现的关键问题。虽然已经提出和应用了各种方法,但它们的比较强度和弱点尚不清楚。在本文中,我们在排名多输入和多输出单元的上下文中评估和比较两种流行的方法,数据包络分析(DEA)和启发式秩占聚合方法(即,BORDA方法)。两种方法都利用了输出输入比,但以不同的方式利用。 BORDA方法通过在各个输出输入比率方面采用级别的算术平均来对单位进行排序,而DEA则基于复合输出输入比率排列单位。我们使用模拟比较波尔达排名聚集和六种DEA模型,包括CCR(Charnes,Cooper,Rhodes),超级效率CCR,BCC(Banker,Charner,Cooper),超级效率BCC,SBM(基于休闲队的衡量标准),和超级效率的SBM。仿真基于Cobb-Douglas和Drocolog生产功能,具有单个输出和多个输出。我们展示了启发式波尔达排名聚集,虽然易于实施,但在三种情况下比DEA模型表现优于DEA模型:小样本大小,生产因子的相对平衡的权重以及多个输出的存在。对于转变生产功能,BORDA方法通常比CCR模型更好地执行,但不能与其他DEA模型匹配。我们还通过应用于人类发展的众所周知的国家的众所周知问题来证明不同方法的性能。在某些条件下,我们的研究揭示了排名聚集的潜力或甚至取代剂DEA。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号