首页> 外文期刊>Expert systems with applications >Real-time classification for autonomous drowsiness detection using eye aspect ratio
【24h】

Real-time classification for autonomous drowsiness detection using eye aspect ratio

机译:使用眼睛纵横比进行自主嗜睡检测的实时分类

获取原文
获取原文并翻译 | 示例

摘要

Various automated systems require human supervision in complex environments: this can be a monotonous task but still requiring a significant degree of attention. If those tasks are decisive to the process and work safety, then it is imperative that operators maintain adequate levels of alertness to execute necessary actions. Here, we developed a methodology for drowsiness detection based on eye patterns of people monitored by video streams. In contrast to physically intrusive methods based on a biological approach (e.g. electrooculogram), computer vision and machine leaning (ML) were used to create a low-cost realtime system to detect whether a user (operator) is drowsy using a simple web camera. The proposed methodology employs drowsiness rules for blink patterns from neuroscience literature, which allows for automatic alertness supervision of users reducing risks of potential human error and then preventing accidents. Specifically, a temporal element is introduced by concatenating information from several consecutive video frames coupled with the ability of ML models in identifying different eye behavior. Here, multilayer perceptron, random forest, and support vector machines were analyzed: the latter had the overall best performance in terms of average test accuracy (94.9%) and required execution time. The proposed methodology also contains a personal feedback proposal to adapt models for each specific user providing even better results. We validated our model in DROZY - a public database for human drowsiness. Interand intra-subject investigations were conducted considering the Karolinska Sleepiness Scale (KSS) evaluation and the reaction time as performance indicators. In inter-subject analysis, our model did not provide any warning when a subject was awake, but an average of 16.1 warnings were emitted for drowsy subjects with 94.44% accuracy. For intra-subject analysis, our model could detect when subjects were prone to drowsiness. These are interesting and promising results regarding drowsiness detection. (c) 2020 Elsevier Ltd. All rights reserved.
机译:各种自动化系统需要在复杂环境中的人类监督:这可能是单调的任务,但仍然需要显着的关注程度。如果这些任务对过程和工作安全决定性,那么运营商必须保持足够的警觉性才能执行必要的行动。在这里,我们开发了一种基于视频流监视的人的眼图案的嗜睡检测方法。与基于生物学方法(例如电纤维图)的物理侵入性方法相比,使用计算机视觉和机器倾斜(ML)来创建低成本的实时系统,以检测用户(运算符)是否使用简单的Web相机昏昏欲睡。该提出的方法采用了神经科学文献的眨眼模式的嗜睡规则,这允许自动警示用户减少潜在人为错误的风险,然后防止事故。具体地,通过从耦合与识别不同的眼睛行为的ML模型的能力的耦合的几个连续视频帧来引入时间元素。在这里,分析了多层森林,随机森林和支持向量机:后者在平均测试精度(94.9%)和所需的执行时间方面具有整体最佳性能。所提出的方法还包含个人反馈提案,以适应每个特定用户的模型,提供更好的结果。我们验证了我们在Drozy的模型 - 一个人类嗜睡的公共数据库。考虑到Karolinska嗜睡量表(KSS)评估和作为绩效指标的反应时间进行绞出。在受试者间分析中,当受试者醒来时,我们的模型没有提供任何警告,但平均为16.1个警告,为昏昏欲睡的主体发出94.44%。对于内部主题分析,我们的模型可以检测受试者易患嗜睡。这些是有趣的,并且有关昏昏欲睡的检测结果。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Expert systems with applications》 |2020年第11期|113505.1-113505.12|共12页
  • 作者单位

    Univ Fed Pernambuco CEERMA Ctr Risk Anal Reliabil & Environm Modeling Recife PE Brazil|Univ Fed Pernambuco Dept Prod Engn Rua Acad Helio Ramos S-N Cidade Univ BR-50740530 Recife PE Brazil;

    Univ Fed Pernambuco CEERMA Ctr Risk Anal Reliabil & Environm Modeling Recife PE Brazil|Univ Fed Pernambuco Dept Prod Engn Rua Acad Helio Ramos S-N Cidade Univ BR-50740530 Recife PE Brazil;

    Univ Fed Pernambuco CEERMA Ctr Risk Anal Reliabil & Environm Modeling Recife PE Brazil|Univ Fed Pernambuco Dept Prod Engn Rua Acad Helio Ramos S-N Cidade Univ BR-50740530 Recife PE Brazil;

    Univ Fed Pernambuco CEERMA Ctr Risk Anal Reliabil & Environm Modeling Recife PE Brazil|Univ Fed Pernambuco Dept Prod Engn Rua Acad Helio Ramos S-N Cidade Univ BR-50740530 Recife PE Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Real-time drowsiness detection; Computer vision; Machine learning; Support vector machine; Eye aspect ratio; Human reliability;

    机译:实时嗜睡检测;计算机愿景;机器学习;支持向量机;眼睛纵横比;人类可靠性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号