首页> 外文期刊>Expert systems with applications >A hybrid recommender system for recommending relevant movies using an expert system
【24h】

A hybrid recommender system for recommending relevant movies using an expert system

机译:用于使用专家系统推荐相关电影的混合推荐系统

获取原文
获取原文并翻译 | 示例

摘要

Currently, the Internet contains a large amount of information, which must then be filtered to determine suitability for certain users. Recommender systems are a very suitable tool for this purpose. In this paper, we propose a monolithic hybrid recommender system called Predictory, which combines a recommender module composed of a collaborative filtering system (using the SVD algorithm), a content-based system, and a fuzzy expert system. The proposed system serves to recommend suitable movies. The system works with favorite and unpopular genres of the user, while the final list of recommended movies is determined using a fuzzy expert system, which evaluates the importance of the movies. The expert system works with several parameters - average movie rating, number of ratings, and the level of similarity between already rated movies. Therefore, our system achieves better results than traditional approaches, such as collaborative filtering systems, content-based systems, and weighted hybrid systems. The system verification based on standard metrics (precision, recall, F1-measure) achieves results over 80%. The main contribution is the creation of a complex hybrid system in the area of movie recommendation, which has been verified on a group of users using the MovieLens dataset and compared with other traditional recommender systems. (C) 2020 Elsevier Ltd. All rights reserved.
机译:目前,Internet包含大量信息,然后必须过滤以确定某些用户的适用性。推荐系统是一个非常合适的工具,为此目的。在本文中,我们提出了一种称为预测的单片混合推荐系统,其组合由协作过滤系统(使用SVD算法),基于内容的系统和模糊专家系统组成的推荐模块。建议的系统用于推荐合适的电影。系统适用于用户最喜欢和不受欢迎的类型,而建议电影的最终列表使用模糊专家系统确定,该系统评估电影的重要性。专家系统适用于几个参数 - 平均电影评级,评级次数,以及已额定电影之间的相似程度。因此,我们的系统比传统方法实现更好的结果,例如协同过滤系统,基于内容的系统和加权混合系统。基于标准度量的系统验证(精确度,召回,F1-MEACE)达到80%以上。主要贡献是在电影建议领域创建复杂的混合系统,这些系统已经在一组用户使用Movielens数据集进行了验证,并与其他传统推荐系统进行比较。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号