首页> 外文期刊>Expert systems with applications >A deceptive review detection framework: Combination of coarse and fine-grained features
【24h】

A deceptive review detection framework: Combination of coarse and fine-grained features

机译:一种欺骗性评论检测框架:粗糙和细粒度的组合

获取原文
获取原文并翻译 | 示例

摘要

Electronic commerce has become a popular shopping mode. To enhance their reputations, attract more customers, and finally obtain more benefits, dishonest sellers often recruit buyers or robots to post a large number of deceptive reviews to mislead users. According to the interpretability of learning results, existing methods for detecting deceptive reviews can be mainly divided into explicit feature-based mining ones and neural network-based implicit feature mining ones. The nature of these works is accurate text classification based on coarse-grained features (e.g., topic, sentence, and document) or fine-grained features (e.g., word). To take full merits of existing approaches, this paper proposes a new framework that explores a method to combine the coarse-grained features and the fine-grained features. In this framework, the coarse-grained implicit semantic features of the topic distribution are learned by the concatenation of a Latent Dirichlet Allocation (LDA) topic model and a 2-layered neural network. The fine-grained implicit semantic features from the word vectors representation of the reviews are parallelly learned by a deep learning framework. Finally, these two granular features are combined and adopted to train a Support Vector Machine (SVM) classifier for detecting whether a review is deceptive or not. To verify the effectiveness and performance of this framework, we derive three models by specifying three popular deep learning models, such as TextCNN, long short-term memory (LSTM), and Bidirectional LSTM (BiLSTM) to learn the fine-grained features. Experimental results on a mixed-domain dataset and balanced/unbalanced in-domain datasets show that all the combination models are superior to the corresponding baseline models considering single features. (C) 2020 Elsevier Ltd. All rights reserved.
机译:电子商务已成为一个受欢迎的购物模式。为了加强他们的声誉,吸引更多的客户,终于获得更多的利益,不诚实的卖家经常招募买家或机器人来发布大量欺骗性评论来误导用户。根据学习结果的可解释性,检测欺骗性评论的现有方法可以主要分为显式的特征的挖掘和基于神经网络的隐式特征挖掘。这些作品的性质是基于粗粒细粒的特征(例如,主题,句子和文件)或细粒度特征(例如,单词)的准确文本分类。为了采取全面的现有方法,本文提出了一种新的框架,探讨了结合粗粒粒子特征和细粒度特征的方法。在该框架中,主题分布的粗粒内隐式语义特征是通过潜在的Dirichlet分配(LDA)主题模型和2层神经网络的串联来学习的。来自Word Vectors的细小隐式语义特征来自评论的评论并行通过深度学习框架并行学习。最后,将这两个粒状特征组合并采用以培训支持向量机(SVM)分类器,用于检测审查是否是欺骗性的。为了验证本框架的有效性和性能,我们通过指定三种流行的深度学习模型,例如Textcnn,长短期内存(LSTM)和双向LSTM(BILSTM)来得出三种模型,以学习细粒度的特征。在混合域数据集和平衡/不平衡的域数据集上的实验结果表明,考虑单个特征,所有组合模型都优于相应的基线模型。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号