首页> 外文期刊>Computing >Incorporating feature representation into BiLSTM for deceptive review detection
【24h】

Incorporating feature representation into BiLSTM for deceptive review detection

机译:将特征表示纳入BiLSTM中以进行欺骗性评论检测

获取原文
获取原文并翻译 | 示例

摘要

Consumers are increasingly influenced by product reviews when purchasing goods or services. At the same time, deceptive reviews usually mislead users. It is inefficient and inaccurate to manually identify deceptive reviews in massive reviews. Therefore, automatically identifying deceptive reviews has become a research trend. Most of existing methods are less effective since they are lack of deeply understanding of reviews. We propose a neural network method with bidirectional long short-term memory (BiLSTM) and feature combination to learn the representation of deceptive reviews. We conduct a large amount of experiments and demonstrate the effectiveness of our proposed method. Specifically, in the mixed-domain detection experiment, the results prove that our model is effective by making comparisons with other neural network-based methods. BiLSTM gives more than 3% improvement in F1 score compared with the most advanced neural network method. Since feature selection plays an important role in this direction, we combine features to improve the performance. Then we get 87.6% F1 value which outperforms the state-of-the-art method. Moreover, in the cross-domain detection experiment, our method achieves 82.4% F1 value which is about 6% higher than the state-of-the-art method on restaurant domain, and it is also robust on doctor domain.
机译:在购买商品或服务时,消费者越来越受到产品评论的影响。同时,欺骗性评论通常会误导用户。在大量评论中手动识别欺骗性评论效率低下且不准确。因此,自动识别欺骗性评论已成为研究趋势。由于缺乏对评论的深刻理解,大多数现有方法效果较差。我们提出了一种具有双向长短期记忆(BiLSTM)和特征组合的神经网络方法,以学习欺骗性评论的表示形式。我们进行了大量的实验,并证明了我们提出的方法的有效性。具体来说,在混合域检测实验中,通过与其他基于神经网络的方法进行比较,结果证明了我们的模型是有效的。与最先进的神经网络方法相比,BiLSTM的F1得分提高了3%以上。由于功能选择在此方向上起着重要作用,因此我们结合使用功能来提高性能。然后我们获得了87.6%的F1值,该值优于最新方法。此外,在跨域检测实验中,我们的方法实现了82.4%的F1值,比饭店领域的最新方法高出6%,并且在医生领域也很可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号