首页> 外文期刊>Expert systems with applications >Optimization of coverage mission for lightweight unmanned aerial vehicles applied in crop data acquisition
【24h】

Optimization of coverage mission for lightweight unmanned aerial vehicles applied in crop data acquisition

机译:优化裁剪数据采集中轻量级无人航空车辆覆盖特派团的优化

获取原文
获取原文并翻译 | 示例

摘要

The crop data acquisition with unmanned aerial vehicles is a popularized alternative to manage the agricultural processes, due to data emerging from portable sensors for image-gathering. Nevertheless, most unmanned aerial vehicles for data acquisition excess the cost of hundreds of dollars, making them inappropriate for small agricultural producers. In this paper, we proposed to achieve crop data acquisition using a Lightweight Unmanned Aerial Vehicle (LUAV), available at a reasonable cost. However, a LUAV has less flight time and robustness than the professional vehicles. To overcome the limitations, we designed a LUAV agent with the goal of optimizing coverage paths using a heuristic strategy in known areas. The path to follow can be selected from three algorithms, Wavefront, Dijkstra or Spiral, which are compared to define an option for the crop under study. A second goal is to improve the LUAV robustness, which was resolved from planning by selecting the start of the coverage mission in order to the flight lines cross the direction of the wind. We complemented the robustness of outdoors positioning using a Kalman Filter extension to specify movements during missions. Finally, using an AR Drone 2.0 quadcopter, we developed a prototype of the LUAV agent to obtain the mosaic of a grass crop. The results respect to optimized coverage mission showed that the Spiral algorithm with a Backtracking technique and avoiding areas of little interest, got the balanced score between revisits, turns, coverage percent and traveled distance. About the LUAV robustness in the presence of wind, the results stated an error of less than 2 m, considered acceptable for image-acquisition purposes. The developed work is simple but effective, and makes evident the viability for that any LUAV type can support the precision agriculture processes in favorable costs. (C) 2020 Elsevier Ltd. All rights reserved.
机译:由于从便携式传感器出现的图像聚集的数据出现,作物数据采集是一种管理农业过程的推广替代方案。尽管如此,大多数无人驾驶的空中车辆的数据采购超出了数百美元的成本,使其不适合小型农业生产商。在本文中,我们建议使用轻质无人驾驶飞行器(LUAV)来实现作物数据采集,以合理的成本提供。然而,Luav比专业车辆更少的飞行时间和鲁棒性。为了克服限制,我们设计了一个Luav代理,其目的是在已知领域的启发式策略中使用启发式策略优化覆盖路径。可以从三种算法,波前,Dijkstra或螺旋中选择的路径,以便在研究下定义作物的选项。第二个目标是通过选择覆盖特派团的开始,改善Luav稳健性,从规划中选择了覆盖作业的开始,以便飞行线路穿过风的方向。我们使用Kalman滤波器扩展来补充户外定位的鲁棒性,以在任务期间指定移动。最后,使用AR无人机2.0 Quadcopter,我们开发了Luav代理的原型,以获得草作物的马赛克。结果尊重优化的覆盖特派团,表明,具有回溯技术的螺旋算法和避免兴趣小的区域,在重新审视,转弯,覆盖率和行驶距离之间进行了平衡分数。关于Luav鲁棒性在风的存在下,结果表明了误差小于2米,被认为是可接受的图像获取目的。开发的工作简单但有效,并显明了任何Luav类型都可以支持有利的成本的精密农业流程。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号