首页> 外文期刊>Expert systems with applications >A Bayesian learning model for design-phase service mashup popularity prediction
【24h】

A Bayesian learning model for design-phase service mashup popularity prediction

机译:设计阶段服务混搭人气预测的贝叶斯学习模型

获取原文
获取原文并翻译 | 示例

摘要

Using web services as building blocks to develop software applications, i.e., service mashups, not only reuses software development efforts to minimize development cost, but also leverages user groups and marketing efforts of those services to attract users and improve profits. This has significantly encouraged the development of a large number of service mashups in various domains. However, using existing services, even popular ones, does not guarantee the success of a mashup. In fact, a large portion of existing mashups fail to attract a good number of users, making the mashup development effort less effective. Design-phase popularity prediction can help avoid unpromising mashup developments by providing early-on insight into the potential popularity of a mashup. In this paper, we investigate the factors that can affect the popularity of a mashup through a comprehensive analysis on one of the largest mashup repository (i.e., ProgrammableWeb). We further propose a novel Bayesian approach that offers early-on insight to developers into the potential popularity of a mashup using design-phase features only. Besides identifying those relevant features, the Bayesian learning model can provide a confidence level for each prediction. This provides useful guidance to developers for successful mashup development. Experimental results demonstrate that the proposed approach achieves high prediction accuracy and outperforms competitive models. (C) 2020 Elsevier Ltd. All rights reserved.
机译:使用Web服务作为构建块以开发软件应用程序,即服务混搭,不仅重用软件开发工作,以尽量减少开发成本,而且还利用这些服务的用户组和营销工作吸引用户并提高利润。这显着鼓励在各个领域中开发大量服务泥质。但是,使用现有服务,即使是流行的服务,不保证Mashup的成功。事实上,一大部分现有的混搭无法吸引良好的用户,使混搭的开发工作较低。设计相位普及预测可以通过提前洞察避免对MASHUP的潜在普及,避免不妥协的混搭开发。在本文中,我们调查了通过对最大的Mashup存储库之一(即ProgrammableWeb)的综合分析来影响Mashup普及的因素。我们进一步提出了一种新颖的贝叶斯方法,可以使用设计阶段特征提前了解开发人员对Mashup的潜在普及。除了识别这些相关特征外,贝叶斯学习模型还可以为每个预测提供置信水平。这为开发人员提供了成功的Mashup开发提供了有用的指导。实验结果表明,该方法实现了高预测准确性和胜过竞争模型。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号