首页> 外文期刊>Technological forecasting and social change >Hybrid machine learning approach for popularity prediction of newly released contents of online video streaming services
【24h】

Hybrid machine learning approach for popularity prediction of newly released contents of online video streaming services

机译:用于在线视频流服务的新发布内容的普及预测混合动力车机学习方法

获取原文
获取原文并翻译 | 示例

摘要

In the industry of video content providers such as VOD and IPTV, predicting the popularity of video contents in advance is critical, not only for marketing but also for network usage. By successfully predicting user preferences, contents can be optimally deployed among servers which ultimately leads to network cost reduction. Many previous studies have predicted view-counts for this purpose. However, they normally make predictions based on historical view-count data from users, given the assumption that contents are already published to users. This can be a downside for newly released contents, which inherently does not have historical data. To address the problem, this research proposes a hybrid machine learning approach for the popularity prediction of unpublished video contents.In this paper, we propose a framework which effectively predicts the popularity of video contents, via a combination of various methods. First, we divide the entire dataset into two types, according to the characteristics of the contents. Next, the popularity prediction is performed by either using XGBoost or neural net with category embedding, which helps resolving the sparsity of categorical variables and requiring the system to learn efficiently for the specified deep neural net model. In addition, we use the FTRL model to alleviate the volatility of view-counts. Experiments are carried out with a dataset from one of the top streaming service companies, and results display overall better performance compared to various standalone methods.
机译:在VOD和IPTV等视频内容提供商的行业中,预先预测视频内容的普及是至关重要的,不仅适用于营销,而且还用于网络使用。通过成功预测用户偏好,可以在最终导致网络成本降低的服务器中最佳地部署内容。以前的许多研究已经预测了此目的的观点计数。但是,考虑到内容已发布给用户,它们通常基于来自用户的历史视图数据进行预测。这可能是新发布的内容的缺点,它固有地没有历史数据。为了解决问题,本研究提出了一种混合机器学习方法,用于未发表的视频内容的普及预测。在本文中,我们提出了一种通过各种方法的组合来有效地预测视频内容的普及的框架。首先,根据内容的特征,我们将整个数据集分为两种类型。接下来,通过使用XGBoost或神经网络与类别嵌入来执行普及预测,这有助于解决分类变量的稀疏性,并要求系统为指定的深神经网络模型有效地学习。此外,我们使用FTRL模型来缓解观测计数的波动。实验与来自顶级流服务公司之一的数据集进行,结果显示与各种独立方法相比的整体性能更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号