首页> 外文期刊>Expert systems with applications >Predicting auction price of vehicle license plate with deep recurrent neural network
【24h】

Predicting auction price of vehicle license plate with deep recurrent neural network

机译:预测深度经常性神经网络车辆牌照的拍卖价格

获取原文
获取原文并翻译 | 示例

摘要

In Chinese societies, superstition is of paramount importance, and vehicle license plates with desirable numbers can fetch very high prices in auctions. Unlike other valuable items, license plates are not allocated an estimated price before auction. I propose that the task of predicting plate prices can be viewed as a natural language processing (NLP) task, as the value depends on the meaning of each individual character on the plate and its semantics. I construct a deep recurrent neural network (RNN) to predict the prices of vehicle license plates in Hong Kong, based on the characters on a plate. I demonstrate the importance of having a deep network and of retraining. Evaluated on 13 years of historical auction prices, the deep RNN's predictions can explain over 80% of price variations, outperforming previous models by a significant margin. I also demonstrate how the model can be extended to become a search engine for plates and to provide estimates of the expected price distribution. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在中国社会中,迷信是至关重要的,车辆牌照具有理想的数字可以获得很高的拍卖价格。与其他有价值的物品不同,牌照在拍卖前未分配估计价格。我建议预测板价格的任务可以被视为自然语言处理(NLP)任务,因为该值取决于板块及其语义上每个单独字符的含义。我构建了一个深入的经常性神经网络(RNN),以预测香港车辆牌照的价格,基于板块上的角色。我展示了拥有深度网络和再培训的重要性。在13年的历史作品价格评估,深入的RNN的预测可以解释80%以上的价格变化,优于以前的型号。我还演示了如何扩展模型以成为板的搜索引擎,并提供预期价格分布的估计。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号