首页> 外文期刊>Expert systems with applications >Privacy-preserving human action recognition as a remote cloud service using RGB-D sensors and deep CNN
【24h】

Privacy-preserving human action recognition as a remote cloud service using RGB-D sensors and deep CNN

机译:使用RGB-D传感器和深CNN作为远程云服务的隐私人员行动认可

获取原文
获取原文并翻译 | 示例

摘要

Cloud-based expert systems are highly emerging nowadays. However, the data owners and cloud service providers are not in the same trusted domain in practice. For the sake of data privacy, sensitive data usually has to be encrypted before outsourcing which makes effective cloud utilization a challenging task. Taking this concern into account, we propose a novel cloud-based approach to securely recognize human activities. A few schemes exist in the literature for secure recognition. However, they suffer from the problem of constrained data and are vulnerable to re-identification attack, where advanced deep learning models are used to predict an object's identity. We address these problems by considering color and depth data, and securing them using position based superpixel transformation. The proposed transformation is designed by actively involving additional noise while resizing the underlying image. Due to this, a higher degree of obfuscation is achieved. Further, in spite of securing the complete video, we secure only four images, that is, one motion history image and three depth motion maps which are highly saving the data overhead. The recognition is performed using a four stream deep Convolutional Neural Network (CNN), where each stream is based on pre-trained MobileNet architecture. Experimental results show that the proposed approach is the best suitable candidate in "security-recognition accuracy (%)" trade-off relation among other image obfuscation as well as state-of-the-art schemes. Moreover, a number of security tests and analyses demonstrate robustness of the proposed approach. (C) 2020 Elsevier Ltd. All rights reserved.
机译:现在云的专家系统现在高度出现。但是,数据所有者和云服务提供商在实践中不在相同的可信域中。为数据隐私的缘故,敏感数据通常必须在外包前加密,这使得有效的云利用具有具有挑战性的任务。考虑到这一顾虑,我们提出了一种基于云的一种新颖的方法来安全地识别人类活动。文献中存在一些方案以确认认可。然而,它们遭受受约束数据的问题,并且易于重新识别攻击,其中使用高级深度学习模型来预测对象的身份。我们通过考虑颜色和深度数据来解决这些问题,并使用基于位置的超像素变换来保护它们。所提出的转换是通过积极涉及额外噪声而调整底层图像的额外噪声来设计。由此,实现了更高程度的混淆。此外,尽管已经确保了完整的视频,但我们只需要四个图像,即一个运动历史图像和三个深度运动映射,其高度保存数据开销。使用四流深卷积神经网络(CNN)执行识别,其中每个流基于预先训练的MobileNet架构。实验结果表明,该方法是“安全识别准确态(%)”的最佳合适的候选者,以及其他图像混淆以及最先进的计划。此外,许多安全测试和分析展示了所提出的方法的鲁棒性。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号