首页> 外文期刊>Expert systems with applications >A co-evolutionary genetic algorithm for the two-machine flow shop group scheduling problem with job-related blocking and transportation times
【24h】

A co-evolutionary genetic algorithm for the two-machine flow shop group scheduling problem with job-related blocking and transportation times

机译:与工作相关的阻塞和运输时间的双机流店组调度问题共进遗传遗传算法

获取原文
获取原文并翻译 | 示例

摘要

This study investigates a new two-machine flow shop group scheduling problem with job-related blocking and transportation times, which is derived from the realistic pipe-making process of steel pipe products in the modern steel manufacturing industry. In contrast to the traditional blocking constraint, the attributes of jobs, not the quantity of jobs in the buffer area, are used to determine the need for a blocking feature. The objective is to minimize the makespan. We present a mixed integer linear programming model and prove that the problem is strongly NP-hard. As the problem is a joint decision of two sub-problems, namely group scheduling and job scheduling within each group, a co-evolutionary genetic algorithm (CGA) is proposed to solve it. In the proposed CGA, the two sub-problems are synergistically evolved via a co-evolutionary framework. A block-mining-based artificial chromosome construction strategy is designed to speed up the convergence process. Computational experiments based on actual production data are carried out. The results indicate that the proposed CGA is effective for the considered problem. (C) 2020 Elsevier Ltd. All rights reserved.
机译:本研究调查了新的双机流店组调度问题,与工作相关的阻塞和运输时间,它来自现代钢铁制造业的钢管产品的现实管道制造过程。与传统的阻塞约束相比,作业的属性,而不是缓冲区区域中的作业量,用于确定对阻塞特征的需求。目标是最大限度地减少MEPESPAN。我们介绍了混合整数线性规划模型,并证明了问题强烈的NP-HARD。由于问题是两个子问题的联合决定,即每个组内的组调度和作业调度,提出了一种共同进化遗传算法(CGA)来解决它。在所提出的CGA中,两个子问题通过共同进化框架协同演化。嵌入式挖掘的人工染色体施工策略旨在加快收敛过程。执行基于实际生产数据的计算实验。结果表明,所提出的CGA对所考虑的问题有效。 (c)2020 elestvier有限公司保留所有权利。

著录项

  • 来源
    《Expert systems with applications》 |2020年第8期|113360.1-113360.11|共11页
  • 作者单位

    Univ Sci & Technol Beijing Donlinks Sch Econ & Management 30 Xueyuan Rd Beijing 100083 Peoples R China|Minist Educ Engn Res Ctr MES Technol Iron & Steel Prod Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Donlinks Sch Econ & Management 30 Xueyuan Rd Beijing 100083 Peoples R China|Minist Educ Engn Res Ctr MES Technol Iron & Steel Prod Beijing 100083 Peoples R China;

    Univ Sci & Technol Beijing Donlinks Sch Econ & Management 30 Xueyuan Rd Beijing 100083 Peoples R China|Minist Educ Engn Res Ctr MES Technol Iron & Steel Prod Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flow shop group scheduling; Job-related blocking time; Transportation time; Co-evolutionary genetic algorithm;

    机译:流店组调度;与工作相关的阻塞时间;运输时间;共同进化遗传算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号