首页> 外文期刊>Expert systems with applications >Learning local representations for scalable RGB-D face recognition
【24h】

Learning local representations for scalable RGB-D face recognition

机译:学习可扩展RGB-D人脸识别的本地表征

获取原文
获取原文并翻译 | 示例

摘要

In this article we present a novel RGB-D learned local representations for face recognition based on facial patch description and matching. The major contribution of the proposed approach is an efficient learning and combination of data-driven descriptors to characterize local patches extracted around image reference points. We explored the complementarity between both of deep learning and statistical image features as data-driven descriptors. In addition, we proposed an efficient high-level fusion scheme based on a sparse representation algorithm to leverage the complementarity between image and depth modalities and also the used data-driven features. Our approach was extensively evaluated on four well-known benchmarks to prove its robustness against known challenges in the case of face recognition. The obtained experimental results are competitive with the state-of-the-art methods while providing a scalable and adaptive RGB-D face recognition method. (c) 2020 Elsevier Ltd. All rights reserved.
机译:在本文中,我们提出了一种基于面部修补程序描述和匹配的面部识别本地表示的新颖的RGB-D。所提出方法的主要贡献是有效的学习和数据驱动描述符的组合,以表征在图像参考点附近提取的本地补丁。我们探讨了深度学习和统计图像特征的互补性作为数据驱动的描述符。此外,我们提出了一种基于稀疏表示算法的高级别融合方案,以利用图像和深度模态之间的互补性以及使用的数据驱动功能。我们的方法在四个着名的基准上广泛评估,以证明在面部识别的情况下对众所周知的挑战进行鲁棒性。所获得的实验结果与现有技术的方法具有竞争力,同时提供可扩展和自适应的RGB-D面识别方法。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号