首页> 外文期刊>Expert systems with applications >Data-level information enhancement: Motion-patch-based Siamese Convolutional Neural Networks for human activity recognition in videos
【24h】

Data-level information enhancement: Motion-patch-based Siamese Convolutional Neural Networks for human activity recognition in videos

机译:数据级信息增强:视频中的运动补丁暹罗卷积神经网络,用于视频中的人类活动识别

获取原文
获取原文并翻译 | 示例

摘要

Data augmentation is critical for deep learning-based human activity recognition (HAR) systems. However, conventional data augmentation methods, such as random-cropping, may generate bad samples that are unrelated to a particular activity (e.g. the background patches without saliency motion information). As a result, the random-cropping based data augmentation may affect negatively the overall performance of HAR systems. Humans, in turn, tend to pay more attention to motion information when recognizing activities. In this work, we attempt to enhance the motion information in HAR systems and mitigate the influence of bad samples through a Siamese architecture, termed as Motion-patch-based Siamese Convolutional Neural Network (MSCNN). The term motion patch is defined as a specific square region that includes critical motion information in the video. We propose a simple yet effective method for selecting those regions. To evaluate the proposed MSCNN, we conduct a number of experiments on the popular datasets UCF-101 and HMDB-51. The mathematical model and experimental results show that the proposed architecture is capable of enhancing the motion information and achieves comparable performance. (C) 2020 Elsevier Ltd. All rights reserved.
机译:数据增强对于基于深度学习的人类活动识别(HAR)系统至关重要。然而,诸如随机裁剪的传统数据增强方法可以生成与特定活动无关的错误样本(例如,没有显着运动信息的后台贴片)。结果,基于随机裁剪的数据增强可能会影响负载系统的整体性能。反过来,人类倾向于在识别活动时更加关注运动信息。在这项工作中,我们尝试通过暹罗架构来增强HAR系统中的运动信息,并通过暹罗架构来减轻错误的样本的影响。被称为基于运动补丁的暹罗卷积神经网络(MSCNN)。术语运动补丁被定义为包括视频中的关键运动信息的特定平方区域。我们提出了一种选择这些地区的简单而有效的方法。为了评估所提出的MSCNN,我们在流行的数据集UCF-101和HMDB-51上进行许多实验。数学模型和实验结果表明,所提出的架构能够增强运动信息并实现相当的性能。 (c)2020 elestvier有限公司保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号