首页> 外文期刊>Expert systems with applications >BPDET: An effective software bug prediction model using deep representation and ensemble learning techniques
【24h】

BPDET: An effective software bug prediction model using deep representation and ensemble learning techniques

机译:BPDET:使用深度表示和集合学习技术的有效软件Bug预测模型

获取原文
获取原文并翻译 | 示例

摘要

In software fault prediction systems, there are many hindrances for detecting faulty modules, such as missing values or samples, data redundancy, irrelevance features, and correlation. Many researchers have built a software bug prediction (SBP) model, which classify faulty and non-faulty module which are associated with software metrics. Till now very few works has been done which addresses the class imbalance problem in SBP. The main objective of this paper is to reveal the favorable result by feature selection and machine learning methods to detect defective and non-defective software modules. We propose a rudimentary classification based framework Bug Prediction using Deep representation and Ensemble learning (BPDET) techniques for SBP. It combinedly applies by ensemble learning (EL) and deep representation(DR). The software metrics which are used for SBP are mostly conventional. Staked denoising auto-encoder (SDA) is used for the deep representation of software metrics, which is a robust feature learning method. Propose model is mainly divided into two stages: deep learning stage and two layers of EL stage (TEL). The extraction of the feature from SDA in the very first step of the model then applied TEL in the second stage. TEL is also dealing with the class imbalance problem. The experiment mainly performed NASA (12) datasets, to reveal the efficiency of DR, SDA, and TEL. The performance is analyzed in terms of Mathew co-relation coefficient (MCC), the area under the curve (AUC), precision-recall area (PRC), F-measure and Time. Out of 12 dataset MCC values over 11 datasets, ROC values over 6 datasets, PRC values overall 12 datasets and F-measure over 8 datasets surpass the existing state of the art bug prediction methods. We have tested BPDET using Wilcoxon rank sum test which rejects the null hypothesis at alpha = 0.025. We have also tested the stability of the model over 5, 8, 10, 12, and 15 fold cross-validation and got similar results. Finally, we conclude that BPDET is a stable and outperformed on most of the datasets compared with EL and another state of the art techniques. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在软件故障预测系统中,有许多障碍用于检测错误的模块,例如缺少值或样本,数据冗余,无关的功能和相关性。许多研究人员建立了一个软件Bug预测(SBP)模型,它对与软件度量相关联的故障和非故障模块进行分类。到目前为止,还有很少的作品,它已经解决了SBP中的类别不平衡问题。本文的主要目的是通过特征选择和机器学习方法揭示有利的结果,以检测有缺陷和无缺陷的软件模块。我们提出了一种基于基于框架的框架Bug预测,使用深度表示和SBP进行了学习(BPDET)技术。它成功地通过集合学习(EL)和深度代表(DR)。用于SBP的软件度量主要是传统的。 Staked Denoising自动编码器(SDA)用于软件度量的深度表示,这是一种强大的特征学习方法。提议模型主要分为两个阶段:深度学习阶段和两层EL阶段(电话)。在模型的第一步中从SDA提取特征,然后在第二阶段进行电话。电话还处理了班级不平衡问题。该实验主要进行了NASA(12)数据集,以揭示DR,SDA和TEL的效率。在Mathew Co-Tronation系数(MCC)方面分析了性能,曲线下的区域(AUC),精密召回区域(PRC),F测量和时间。在12个数据集中超过11个数据集中的MCC值,ROC值超过6个数据集,PRC值总体12个数据集和8个数据集超过8个数据集超过现有的艺术错误预测方法的现有状态。我们使用Wilcoxon等级测试测试了BPDET,其在alpha = 0.025处拒绝零假设。我们还测试了超过5,8,10,12和15倍交叉验证的模型的稳定性并获得了类似的结果。最后,我们得出结论,与EL和另一种最新技术相比,BPDET在大多数数据集上是一种稳定和优于大多数数据集。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号