首页> 外文期刊>Expert systems with applications >Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy
【24h】

Evolving an optimal kernel extreme learning machine by using an enhanced grey wolf optimization strategy

机译:通过使用增强的灰狼优化策略演变最佳核极限学习机

获取原文
获取原文并翻译 | 示例

摘要

Since its introduction, kernel extreme learning machine (KELM) has been widely used in a number of areas. The parameters in the model have an important influence on the performance of KELM. Therefore, model parameters must be properly adjusted before they can be put into practical use. This study proposes a new parameter learning strategy based on an improved grey wolf optimization (IGWO) strategy, in which a new hierarchical mechanism was established to improve the stochastic behavior, and exploration capability of grey wolves. In the proposed mechanism, random local search around the optimal grey wolf was introduced in Beta grey wolves, and random global search was introduced in Omega grey wolves. The effectiveness of IGWO strategy is first validated on 10 commonly used benchmark functions. Results have shown that the proposed IGWO can find good balance between exploration and exploitation. In addition, when IGWO is applied to solve the parameter adjustment problem of KELM model, it also provides better performance than other seven meta-heuristic algorithms in three practical applications, including students' second major selection, thyroid cancer diagnosis and financial stress prediction. Therefore, the method proposed in this paper can serve as a good candidate tool for tuning the parameters of KELM, thus enabling the KELM model to achieve more promising results in practical applications. (C) 2019 Elsevier Ltd. All rights reserved.
机译:自介绍以来,内核极端学习机(KELM)已广泛应用于许多领域。模型中的参数对Kelm的性能产生了重要影响。因此,必须在实际使用之前正确调整模型参数。本研究提出了一种基于改进的灰狼优化(IGWO)策略的新参数学习策略,其中建立了一种新的分层机制,提高随机行为,灰狼的勘探能力。在拟议的机制中,围绕最佳灰狼的随机本地搜索在Beta灰狼中引入,随机全球搜索是在欧米茄灰狼中引入的。 IGWO策略的有效性首先于10个常用的基准函数验证。结果表明,建议的Igwo可以在勘探和剥削之间找到良好的平衡。此外,当应用IGWO来解决KELM模型的参数调整问题时,它还提供比三个实际应用中的其他七元启发式算法更好的性能,包括学生的第二种主要选择,甲状腺癌诊断和财务压力预测。因此,本文提出的方法可以作为调整kelm参数的良好候选工具,从而使kelm模型能够实现更有前途的实际应用的结果。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号