首页> 外文期刊>Expert systems with applications >An efficient simulation optimization methodology to solve a multi-objective problem in unreliable unbalanced production lines
【24h】

An efficient simulation optimization methodology to solve a multi-objective problem in unreliable unbalanced production lines

机译:一种有效的仿真优化方法,可以在不可靠的不平衡生产线中解决多目标问题

获取原文
获取原文并翻译 | 示例

摘要

This research develops an expert system to addresses a novel problem in the literature of buffer allocation and production lines. We investigate real-world unreliable unbalanced production lines where all time-based parameters are probabilistic including time between parts arrivals, processing times, time between failures, repairing times, and setup times. The main contributions of the paper are a twofold. First and foremost, the mean processing times of workstations and buffer capacities, unlike the existing literature, are considered as decision variables in a multi-objective optimization problem which maximizes the throughput rate and minimizes the total buffer capacities as well as the total cost of the mean process time reductions. Secondly, an efficient methodology is developed that can precisely reflect a real-world system without any unrealistic and/or restrictive assumptions on the probabilistic nature of the system, which are commonly assumed in the existing literature. One of the greatest challenges in this research is to estimate the throughput rate function since it highly depends on the random behavior of the system. Thus, a simulation optimization approach is developed based on the Design of Experiments and Response Surface Methodology to fit a regression model for throughput rate. Finally, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Non-dominated Ranked Genetic Algorithm (NRGA) are used to generate high-quality solutions for the aforementioned problem. This methodology is run on a real numerical case. The experimental results confirm the advantages of the proposed methodology. This methodology is an innovative expert system with a knowledge-base developed through this simulation optimization approach. This expert system can be applied to complex production line problems in large or small scale with different types of decision variables and objective functions. The application of this expert system is transformative to other manufacturing systems. (C) 2019 Elsevier Ltd. All rights reserved.
机译:该研究开发了一个专家系统,以解决缓冲分配和生产线的文献中的一个新问题。我们调查现实世界不可靠的不平衡生产线,其中所有基于时间的参数都是概率,包括部件到来之间的时间,处理时间,故障之间的时间,修复时间和设置时间之间的时间。本文的主要贡献是双重的。首先,与现有文献不同,工作站和缓冲容量的平均处理时间被认为是多目标优化问题中的决策变量,最大化吞吐率并最大限度地减少总缓冲器容量以及总成本平均过程时间减少。其次,开发了一种有效的方法,可以精确地反映一个真实世界的系统,而没有对系统的概率性质的任何不现实的和/或限制性假设,这通常在现有文献中常见。本研究中最大的挑战之一是估计吞吐率函数,因为它高度取决于系统的随机行为。因此,基于实验和响应面方法的设计开发了模拟优化方法,以适应吞吐率的回归模型。最后,非主导的分类遗传算法(NSGA-II)和非主导的排名遗传算法(NRGA)用于为上述问题产生高质量解决方案。该方法在真正的数字情况下运行。实验结果证实了提出的方法的优势。该方法是一种创新的专家系统,具有通过此模拟优化方法开发的知识库。该专家系统可以应用于大型或小规模的复杂生产线问题,不同类型的决策变量和客观函数。该专家系统的应用是转型对其他制造系统的变化性。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号