首页> 外文期刊>Expert systems with applications >A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem
【24h】

A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem

机译:一个混合二进制粒子群优化,带有禁忌搜索设定union背包问题

获取原文
获取原文并翻译 | 示例

摘要

The set-union knapsack problem (SUKP) is a generalization of the standard 0-1 knapsack problem. It is NP-hard, and has several industrial applications. Several approximation and heuristic approaches have been previously presented for solving the SUKP. However, the solution quality still needs to be enhanced. This work develops a hybrid binary particle swarm optimization with tabu search (HBPSO/TS) to solve the SUKP. First, an adaptive penalty function is utilized to evaluate the quality of solutions during the search. This method endeavours to explore the boundary of the feasible solution space. Next, based on the characteristics of the SUKP, a novel position updating procedure is designed. The newly generated solutions obtain the good structures of previously found solutions. Then, a tabu based mutation procedure is introduced to lead the search to enter into new hopeful regions. Finally, we design a tabu search procedure to improve the exploitation ability. Furthermore, a gain updating strategy is employed to reduce the solution time. The HBPSO/TS is tested on three sets of 30 benchmark instances, and comparisons with current state-of-the-art algorithms are performed. Experimental results show that HBPSO/TS performs much better than the other algorithms in terms of solution quality. Moreover, HBPSO/TS improves new best results at 28 out of the 30 instances. The impact of the main parts of the HBPSO/TS is also experimentally investigated. (C) 2019 Elsevier Ltd. All rights reserved.
机译:设立联合背包问题(SUKP)是标准0-1背包问题的概括。它是NP-HARD,并有几种工业应用。以前提出了几种近似和启发式方法来解决SUKP。但是,仍需提高解决方案质量。此工作开发了一个与禁忌搜索(HBPSO / TS)的混合二进制粒子群优化来解决SUKP。首先,利用自适应惩罚功能来评估搜索期间的解决方案质量。这种方法努力探索可行解决方案空间的边界。接下来,基于SUKP的特性,设计了一种新的位置更新程序。新产生的解决方案获得了先前发现的溶液的良好结构。然后,引入了一种基于禁忌的突变程序,以引导搜索进入新的充满希望区域。最后,我们设计了一个禁忌搜索程序,以提高利用能力。此外,采用增益更新策略来减少解决方案时间。 HBPSO / TS在三组30个基准实例上进行测试,并执行与当前最先进的算法的比较。实验结果表明,在解决方案质量方面,HBPSO / TS比其他算法更好地执行。此外,HBPSO / TS在30个实例中提高了28个的最佳效果。 HBPSO / TS的主要部分的影响也是通过实验研究的。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号