首页> 外文期刊>Expert Systems with Application >A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem
【24h】

A hybrid binary particle swarm optimization with tabu search for the set-union knapsack problem

机译:禁忌搜索的混合二进制粒子群算法求解集联盟背包问题

获取原文
获取原文并翻译 | 示例

摘要

The set-union knapsack problem (SUKP) is a generalization of the standard 0-1 knapsack problem. It is NP-hard, and has several industrial applications. Several approximation and heuristic approaches have been previously presented for solving the SUKP. However, the solution quality still needs to be enhanced. This work develops a hybrid binary particle swarm optimization with tabu search (HBPSO/TS) to solve the SUKP. First, an adaptive penalty function is utilized to evaluate the quality of solutions during the search. This method endeavours to explore the boundary of the feasible solution space. Next, based on the characteristics of the SUKP, a novel position updating procedure is designed. The newly generated solutions obtain the good structures of previously found solutions. Then, a tabu based mutation procedure is introduced to lead the search to enter into new hopeful regions. Finally, we design a tabu search procedure to improve the exploitation ability. Furthermore, a gain updating strategy is employed to reduce the solution time. The HBPSO/TS is tested on three sets of 30 benchmark instances, and comparisons with current state-of-the-art algorithms are performed. Experimental results show that HBPSO/TS performs much better than the other algorithms in terms of solution quality. Moreover, HBPSO/TS improves new best results at 28 out of the 30 instances. The impact of the main parts of the HBPSO/TS is also experimentally investigated. (C) 2019 Elsevier Ltd. All rights reserved.
机译:集合工会背包问题(SUKP)是标准0-1背包问题的推广。它是NP硬质的,具有多种工业应用。先前已经提出了几种近似和启发式方法来解决SUKP。但是,解决方案质量仍然需要提高。这项工作开发了带有禁忌搜索(HBPSO / TS)的混合二元粒子群算法来解决SUKP问题。首先,利用自适应惩罚函数来评估搜索过程中解的质量。该方法致力于探索可行解空间的边界。接下来,基于SUKP的特征,设计了新颖的位置更新过程。新生成的解决方案具有以前找到的解决方案的良好结构。然后,引入了基于禁忌的突变程序,以引导搜索进入新的希望区域。最后,设计了禁忌搜索程序,以提高开发能力。此外,采用增益更新策略来减少求解时间。 HBPSO / TS在三组30个基准实例上进行了测试,并与当前最新算法进行了比较。实验结果表明,HBPSO / TS在解决方案质量方面比其他算法要好得多。此外,HBPSO / TS在30个实例中有28个改善了新的最佳结果。还通过实验研究了HBPSO / TS主要部分的影响。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Expert Systems with Application》 |2019年第11期|201-211|共11页
  • 作者单位

    Minjiang Univ, Collaborat Innovat Ctr IoT Industrializat & Intel, Fuzhou 350121, Fujian, Peoples R China|Minjiang Univ, Coll Math & Data Sci, Fuzhou 350121, Fujian, Peoples R China;

    Minjiang Univ, Modern Educ Technol Ctr, Fuzhou 350121, Fujian, Peoples R China;

    Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou 350121, Fujian, Peoples R China;

    Minjiang Univ, Fujian Prov Key Lab Informat Proc & Intelligent C, Fuzhou 350121, Fujian, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Set-union knapsack problem; Particle swarm optimization; Local search; Heuristic; Binary programming;

    机译:集合联合背包问题;粒子群优化;本地搜索;启发式;二进制编程;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号