首页> 外文期刊>Expert systems with applications >A novel UMIDAS-SVQR model with mixed frequency investor sentiment for predicting stock market volatility
【24h】

A novel UMIDAS-SVQR model with mixed frequency investor sentiment for predicting stock market volatility

机译:一种新的UMIDAS-SVQR模型,具有预测股市波动的混合频率投资者情绪

获取原文
获取原文并翻译 | 示例

摘要

Recently, exploring the impact of investor sentiment on stock market volatility becomes popular yet challenging. Two issues on mixed frequency data and nonlinear relationship modelling have to be addressed simultaneously. To this end, we combine unrestricted mixed data sampling (UMIDAS) and support vector quantile regression (SVQR) to propose a novel UMIDAS-SVQR model under the framework of quantile regression. The UMIDAS-SVQR model can be estimated by solving a quadratic programming problem. Thus, we implement the nonlinear quantile regression on mixed frequency data by introducing a kernel function. We then apply the proposed UMIDAS-SVQR model to predict weekly volatility of SHSE and HS300 in mainland China, using mixed frequency investor sentiment as predictors. The empirical results show that the UMIDAS-SVQR model is promising and superior to several competing models in terms of accuracy and robustness. Additionally, we find that the models with investor sentiment are usually superior to those without considering this across different markets and quantile intervals. (C) 2019 Elsevier Ltd. All rights reserved.
机译:最近,探索投资者对股票市场波动的影响变得越来越有挑战性。混合频率数据和非线性关系建模的两个问题必须同时寻址。为此,我们将不受限制的混合数据采样(UMIDAS)组合并支持向量定量回归(SVQR),以在分位数回归框架下提出新的UMIDAS-SVQR模型。可以通过解决二次编程问题来估计UMIDAS-SVQR模型。因此,我们通过引入内核函数来实现混合频率数据的非线性定量回归。然后,我们将提议的UMIDAS-SVQR模型应用于中国大陆的SHSE和HS300的每周波动,使用混合频率投资者感情作为预测因素。实证结果表明,在准确性和稳健性方面,UMIDAS-SVQR模型具有很强的竞争模式。此外,我们发现,具有投资者情绪的模型通常优于那些,而不考虑不同的市场和分量间隔。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号