首页> 外文期刊>Expert systems with applications >Behind the cues: A benchmarking study for fake news detection
【24h】

Behind the cues: A benchmarking study for fake news detection

机译:线索背后:假新闻检测的基准研究

获取原文
获取原文并翻译 | 示例

摘要

Fake news has become a problem of great impact in our information driven society because of the continuous and intense fakesters content distribution. Information quality in news feeds is under questionable veracity calling for automated tools to detect fake news articles. Due to many faces of fakesters, creating such tool is a challenging problem. In this work, we propose a model for fake news detection using content based features and Machine Learning (ML) algorithms. To conclude in most accurate model we evaluate several feature sets proposed for deception detection and word embeddings as well. Moreover, we test the most popular ML classifiers and investigate the possible improvement reached under ensemble ML methods such as AdaBoost and Bagging. An extensive set of earlier data sources has been used for experimentation and evaluation of both feature sets and ML classifiers. Moreover, we introduce a new text corpus, the "UNBiased" (UNB) dataset, which integrates various news sources and fulfills several standards and rules to avoid biased results in classification task. Our experimental results show that the use of an enhanced linguistic feature set with word embeddings along with ensemble algorithms and Support Vector Machines (SVMs) is capable to classify fake news with high accuracy. (C) 2019 Elsevier Ltd. All rights reserved.
机译:由于持续和强大的诈骗者的内容分布,假新闻已成为我们信息驱动社会影响的巨大影响问题。新闻饲料中的信息质量是可疑的,呼吁自动化工具来检测假新闻文章。由于戴克斯特人的许多面孔,创造了这样的工具是一个具有挑战性的问题。在这项工作中,我们建议使用基于内容的特征和机器学习(ML)算法来提出假新闻检测的模型。在最准确的模型中得出结论,我们评估了为欺骗检测和单词嵌入的若干特征集。此外,我们测试最受欢迎的ML分类器,并研究在合奏ML方法中达到的可能改进,如Adaboost和Bagging。一组广泛的早期数据源已用于对特征集和ML分类器的实验和评估。此外,我们介绍了一个新的文本语料库,“无偏的”(UNB)数据集,它集成了各种新闻来源,并满足了几个标准和规则,以避免偏见的分类任务。我们的实验结果表明,使用具有Word Embeddings的增强语言特征以及集合算法和支持向量机(SVM)能够以高精度对假新闻进行分类。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号