首页> 外文期刊>Expert systems with applications >Generating summary sentences using Adversarially Regularized Autoencoders with conditional context
【24h】

Generating summary sentences using Adversarially Regularized Autoencoders with conditional context

机译:使用具有条件上下文的对抗性正则化的AutoEncoders生成摘要句子

获取原文
获取原文并翻译 | 示例

摘要

The Abstractive summarization is challenging problem, especially abstractive summarization based on unsupervised learning because it must generate whole, unique sentences. In the real world, companies use abstractive summarization to understand customer feedbacks. In many cases, this work is done by humans and so is expensive in terms of time and money. Therefore, there is an increasing demand for machine learning-based abstractive summarization systems. However, most previous abstractive summarization studies were of supervised models. In this paper, we proposed novel abstractive summarization methods that can be trained unsupervisedly. One of the proposed methods is based on Adversarially Regularized Autoencoder(ARAE) model, but abstractive summary generation method for each cluster of similar customers' reviews, is newly proposed. We further proposed Conditional Adversarially Regularized Autoencoder(CARAE) model which is similar to the ARAE model but with the addition of condition nodes so that additional information about the cluster can be used during summarization. We first performed summary experiments based on Korean and additionally performed experiments on English. In the experiments, we set up some comparison models and used ROUGE and BLEU to evaluate our proposed models' performance. Overall, our proposed models outperformed the comparison models and CARAE model performed better than the ARAE model. (C) 2019 Elsevier Ltd. All rights reserved.
机译:抽象总结是挑战的问题,特别是基于无监督学习的抽象摘要,因为它必须生成整个独特的句子。在现实世界中,公司使用抽象摘要来了解客户的反馈。在许多情况下,这项工作由人类完成,在时间和金钱方面都是昂贵的。因此,对基于机器学习的抽象概述系统的需求越来越大。然而,最先前的抽象摘要研究是监督模型。在本文中,我们提出了新型抽象摘要方法,可以无限制地培训。其中一个提出的方法是基于对抗正规的AutoEncoder(AREAE)模型,但新提出了对每个类似客户评论群集的抽象摘要生成方法。我们进一步提出了与ARAE模型类似的有条件的对接性正则化的AutoEncoder(Carae)模型,但是通过增加条件节点,以便在概要期间使用关于群集的附加信息。我们首先根据韩国进行摘要实验,另外对英语进行了实验。在实验中,我们建立了一些比较模型,并使用胭脂和bleu来评估我们所提出的模型的性能。总的来说,我们所提出的模型优于比较模型和Carae模型比ARAE模型更好。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号