首页> 外文期刊>Expert Systems with Application >Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection
【24h】

Stacking ensemble based deep neural networks modeling for effective epileptic seizure detection

机译:基于堆叠集成的深度神经网络建模,可有效检测癫痫发作

获取原文
获取原文并翻译 | 示例

摘要

Electroencephalography signals obtained from the brain's electrical activity are commonly used for the diagnosis of neurological diseases. These signals indicate the electrical activity in the brain and contain information about the brain. Epilepsy, one of the most important diseases in the brain, manifests itself as a result of abnormal pathological oscillating activity of a group of neurons in the brain. Automated systems that employed the electroencephalography signals are being developed for the assessment and diagnosis of epileptic seizures. The aim of this study is to focus on the effectiveness of stacking ensemble approach based model for predicting whether there is epileptic seizure or not. So, this study enables the readers and researchers to examine the proposed stacking ensemble model. The benchmark clinical dataset provided by Bonn University was used to assess the proposed model. Comparative experiments were conducted by utilizing the proposed model and the base deep neural networks model to show the effectiveness of the proposed model for seizure detection. Experiments show that the proposed model is proven to be competitive to base DNN model. The results indicate that the performance of the epileptic seizure detection by the stacking ensemble based deep neural networks model is high; especially the average accuracy value of 97.17%. Also, its average sensitivity with 93.11% is superior to the base DNN model. Thus, it can be said that the proposed model can be included in an expert system or decision support system. In this context, this system would be precious for the clinical diagnosis and treatment of epilepsy. (C) 2020 Elsevier Ltd. All rights reserved.
机译:从大脑的电活动获得的脑电图信号通常用于神经系统疾病的诊断。这些信号指示大脑中的电活动,并包含有关大脑的信息。癫痫病是大脑中最重要的疾病之一,它是由于大脑中一组神经元的异常病理振荡活动而表现出来的。正在开发使用脑电图信号的自动化系统来评估和诊断癫痫发作。这项研究的目的是集中于基于堆叠合奏方法的模型在预测是否存在癫痫发作方面的有效性。因此,这项研究使读者和研究人员能够研究所提出的堆叠集成模型。波恩大学提供的基准临床数据集用于评估该模型。利用所提出的模型和基础深层神经网络模型进行了比较实验,以证明所提出的模型对于癫痫发作检测的有效性。实验表明,该模型与基本的DNN模型相比具有竞争优势。结果表明,基于堆叠集成的深度神经网络模型对癫痫发作的检测性能较高;特别是平均准确度值为97.17%。而且,其平均灵敏度为93.11%,优于基本DNN模型。因此,可以说,所提出的模型可以被包括在专家系统或决策支持系统中。在这种情况下,该系统对于癫痫的临床诊断和治疗将是宝贵的。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号