首页> 外文期刊>Expert Systems with Application >Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems
【24h】

Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems

机译:小组教学优化算法:一种解决全局优化问题的新元启发式方法

获取原文
获取原文并翻译 | 示例

摘要

In last 30 years, many metaheuristic algorithms have been developed to solve optimization problems. However, most existing metaheuristic algorithms have extra control parameters except the essential population size and stopping criterion. Considering different characteristics of different optimization problems, how to adjust these extra control parameters is a great challenge for these algorithms in solving different optimization problems. In order to address this challenge, a new metaheuristic algorithm called group teaching optimization algorithm (GTOA) is presented in this paper. The proposed GTOA is inspired by group teaching mechanism. To adapt group teaching to be suitable for using as an optimization technique, without loss of generality, four simple rules are first defined. Then a group teaching model is built under the guide of the four rules, which consists of teacher allocation phase, ability grouping phase, teacher phase and student phase. Note that GTOA needs only the essential population size and stopping criterion without extra control parameters, which has great potential to be used widely. GTOA is first examined over 28 well-known unconstrained benchmark problems and the optimization results are compared with nine state-of-the-art algorithms. Experimental results show the superior performance of the proposed GTOA for these problems in terms of solution quality, convergence speed and stability. Furthermore, GTOA is used to solve four constrained engineering design optimization problems in the real world. Simulation results demonstrate the proposed GTOA can find better solutions with faster speed compared with the reported optimizers. (C) 2020 Elsevier Ltd. All rights reserved.
机译:在最近的30年中,已经开发了许多元启发式算法来解决优化问题。但是,大多数现有的元启发式算法除了基本的人口规模和停止标准外,还具有额外的控制参数。考虑到不同优化问题的不同特征,如何调整这些额外的控制参数是这些算法解决不同优化问题的巨大挑战。为了解决这个挑战,本文提出了一种新的启发式算法,称为组教学优化算法(GTOA)。拟议的GTOA受小组教学机制的启发。为了使小组教学适合用作优化技术而又不失一般性,首先定义了四个简单规则。然后在四个规则的指导下建立了小组教学模型,该模型由教师分配阶段,能力分组阶段,教师阶段和学生阶段组成。请注意,GTOA仅需要基本的人口规模和停车标准,而无需额外的控制参数,这具有广泛应用的巨大潜力。首先对GTOA进行了28个著名的无约束基准测试问题的检验,并将优化结果与9个最新算法进行了比较。实验结果表明,所提出的GTOA在解决方案质量,收敛速度和稳定性方面均具有出色的性能。此外,GTOA用于解决现实世界中的四个受限工程设计优化问题。仿真结果表明,与报告的优化器相比,拟议的GTOA可以更快地找到更好的解决方案。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号