首页> 外文期刊>Expert Systems with Application >A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem
【24h】

A genetic programming hyper-heuristic approach for the multi-skill resource constrained project scheduling problem

机译:多技能资源受限项目调度问题的遗传规划超启发式方法

获取原文
获取原文并翻译 | 示例

摘要

Multi-skill resource-constrained project scheduling problem (MS-RCPSP) is one of the most investigated problems in operations research and management science. In this paper, a genetic programming hyperheuristic (GP-HH) algorithm is proposed to address the MS-RCPSP. Firstly, a single task sequence vector is used to encode solution, and a repair-based decoding scheme is proposed to generate feasible schedules. Secondly, ten simple heuristic rules are designed to construct a set of low-level heuristics. Thirdly, genetic programming is utilized as a high-level strategy which can manage the low-level heuristics on the heuristic domain flexibly. In addition, the design-of-experiment (DOE) method is employed to investigate the effect of parameters setting. Finally, the performance of GP-HH is evaluated on the intelligent multi-objective project scheduling environment (iMOPSE) benchmark dataset consisting of 36 instances. Computational comparisons between GP-HH and the state-of-the-art algorithms indicate the superiority of the proposed GP-HH in computing feasible solutions to the problem. (C) 2019 Elsevier Ltd. All rights reserved.
机译:多技能资源受限项目调度问题(MS-RCPSP)是运筹学和管理科学中研究最多的问题之一。本文提出了一种遗传规划超启发式算法(GP-HH)来解决MS-RCPSP问题。首先,使用单个任务序列向量对解决方案进行编码,并提出了一种基于修复的解码方案来生成可行的调度表。其次,设计了十个简单的启发式规则来构造一组低级启发式。第三,将遗传程序设计作为一种高级策略,可以灵活地管理启发式域中的低级启发式算法。此外,实验设计(DOE)方法用于研究参数设置的效果。最后,在由36个实例组成的智能多目标项目计划环境(iMOPSE)基准数据集上评估了GP-HH的性能。 GP-HH与最新算法之间的计算比较表明,所提出的GP-HH在计算该问题的可行解决方案方面具有优势。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号