首页> 外文期刊>Expert Systems with Application >Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm
【24h】

Friend recommendation for cross marketing in online brand community based on intelligent attention allocation link prediction algorithm

机译:基于智能注意力分配链接预测算法的在线品牌社区交叉营销朋友推荐

获取原文
获取原文并翻译 | 示例

摘要

Circle structure of online brand communities allows companies to conduct cross-marketing activities by the influence of friends in different circles and build strong and lasting relationships with customers. However, existing works on the friend recommendation in social network do not consider establishing friendships between users in different circles, which has the problems of network sparsity, neither do they study the adaptive generation of appropriate link prediction algorithms for different circle features. In order to fill the gaps in previous works, the intelligent attention allocation link prediction algorithm is proposed to adaptively build attention allocation index (MI) according to the sparseness of the network and predict the possible friendships between users in different circles. The AAI reflects the amount of attention allocated to the user pair by their common friend in the triadic closure structure, which is decided by the friend count of the common friend. Specifically, for the purpose of overcoming the problem of network sparsity, the AAIs of both the direct common friends and indirect ones are developed. Next, the decision tree (DT) method is constructed to adaptively select the suitable AAIs for the circle structure based on the density of common friends and the dispersion level of common friends' attention. In addition, for the sake of further improving the accuracy of the selected AAI, its complementary AAIs are identified with support vector machine model according to their similarity in value, direction, and ranking. Finally, the mutually complementary indices are combined into a composite one to comprehensively portray the attention distribution of common friends of users in different circles and predict their possible friendships for cross-marketing activities. Experimental results on Twitter and Google+ show that the model has highly reliable prediction performance. (C) 2019 Elsevier Ltd. All rights reserved.
机译:在线品牌社区的圈子结构允许公司在不同圈子中的朋友的影响下进行交叉营销活动,并与客户建立牢固而持久的关系。然而,现有的关于社交网络中朋友推荐的工作并未考虑在不同圈子的用户之间建立友谊,这存在网络稀疏性的问题,他们也没有研究针对不同圈子特征的自适应链接预测算法的自适应生成。为了弥补以往工作中的空白,提出了一种智能的注意力分配链接预测算法,可以根据网络的稀疏性自适应地建立注意力分配指数(MI),并预测不同圈子用户之间的可能友谊。 AAI反映了三重封闭结构中他们的共同朋友分配给用户对的注意力量,这由共同朋友的朋友数决定。具体地,为了克服网络稀疏性的问题,开发了直接共同朋友和间接共同朋友的AAI。接下来,构造决策树(DT)方法,以根据共同朋友的密度和共同朋友的注意力分散程度,为圈子结构自适应地选择合适的AAI。另外,为了进一步提高所选AAI的准确性,根据其价值,方向和排名的相似性,用支持向量机模型识别其互补AAI。最后,将相互补充的指标合并为一个综合指标,以全面刻画不同圈子中用户共同朋友的注意力分布,并预测他们在交叉营销活动中可能的友谊。 Twitter和Google+上的实验结果表明,该模型具有高度可靠的预测性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号