首页> 外文期刊>Expert Systems with Application >Automatic multiple moving humans detection and tracking in image sequences taken from a stationary thermal infrared camera
【24h】

Automatic multiple moving humans detection and tracking in image sequences taken from a stationary thermal infrared camera

机译:自动多动人检测和跟踪从固定式红外热像仪拍摄的图像序列

获取原文
获取原文并翻译 | 示例

摘要

Several Particle Filter (PF)-based methods for human tracking in thermal IR image sequences have been proposed in the literature. Unfortunately, the majority of these methods are developed for tracking only a single human. Moreover, this human is manually pre-selected in the first frame of the image sequence, which is not practical for the real case of intelligent and efficient video surveillance system that needs tracking more than one human and without any external operator intervention. To contribute to addressing this need, in this paper, we propose a novel PF-based method that detects and tracks multiple moving humans using a thermal IR camera, without prior knowledge about their number and initial locations in the monitored scene. This method consists of three main parts. In the first one, all the moving objects are extracted from the image sequence by using the Gaussian Mixture Model (GMM) and then, for each extracted object, a combined shape, appearance, spatial and temporal-based similarity function that allows us to detect a human without any prior training of a mathematical model is calculated. The second part consists in tracking the human previously detected by using a PF and an adaptive combination of spatial, intensity, texture and motion velocity cues. In each cue, a model for the detected human is created, and when new observations arrive in the next frames, the similarity distances between each created model and the observed moving regions are calculated. The human tracking is achieved by combining individual similarity distances using adaptive weights, into a PF algorithm. The third part is devoted to detect and handle occlusions by using simple heuristic rules and grayscale Vertical Projection Histogram (VPH). Each part of the proposed method was separately tested on a set of real-world thermal IR image sequences containing background clutters, appearance and disappearance of multiple moving objects, occlusions, illumination and scales changes. A comparative study with several state-of-the-art methods has shown that the proposed method performs consistently better in terms of Center Location Error (CLE) and the Success Rate (SR), and it can also run at speed of about 15 Frame Per Second per human, which is considerably enough for real-time applications. (C) 2020 Elsevier Ltd. All rights reserved.
机译:文献中已经提出了几种基于粒子滤波(PF)的方法来对红外热图像序列进行人体跟踪。不幸的是,这些方法中的大多数都是为仅跟踪一个人而开发的。此外,在图像序列的第一帧中手动预选了此人,这对于需要跟踪多个人并且无需任何外部操作员干预的智能,高效的视频监控系统的实际情况是不切实际的。为了满足这一需求,在本文中,我们提出了一种新颖的基于PF的方法,该方法可以使用热红外摄像机检测并跟踪多个移动的人,而无需事先了解被监视场景中的人数和初始位置。该方法包括三个主要部分。在第一个中,使用高斯混合模型(GMM)从图像序列中提取所有运动对象,然后,对于每个提取的对象,使用组合的形状,外观,基于空间和时间的相似度函数,使我们能够检测无需事先训练数学模型即可计算出一个人。第二部分包括通过使用PF以及空间,强度,纹理和运动速度提示的自适应组合来跟踪先前检测到的人。在每个提示中,都会创建一个用于检测到的人类的模型,并且当新的观测值到达下一帧时,将计算每个创建的模型与观测到的移动区域之间的相似距离。通过使用自适应权重将单个相似距离组合到PF算法中,可以实现人类跟踪。第三部分致力于通过使用简单的启发式规则和灰度垂直投影直方图(VPH)来检测和处理遮挡。在一组包含背景杂波,多个运动物体的出现和消失,遮挡,照明和比例尺变化的真实红外图像序列上分别测试了该方法的每个部分。与几种最新方法的比较研究表明,该方法在中心位置误差(CLE)和成功率(SR)方面始终表现出更好的性能,并且还可以约15帧的速度运行每人每秒,这对于实时应用程序来说已经足够了。 (C)2020 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号