首页> 外文期刊>Expert Systems with Application >Energy-efficient flexible flow shop scheduling with worker flexibility
【24h】

Energy-efficient flexible flow shop scheduling with worker flexibility

机译:高效灵活的流水车间调度和员工灵活性

获取原文
获取原文并翻译 | 示例

摘要

The classical flexible flow shop scheduling problem (FFSP) only considers machine flexibility. Thus far, the relevant literature has not studied FFSPs with worker flexibility, which is widely seen in practical manufacturing systems. Worker flexibility may greatly affect production efficiency and productivity. Furthermore, with the increase of environmental pollution and energy consumption, manufacturers require innovative methods to improve energy efficiency. In this paper, we propose an energy-efficient FFSP with worker flexibility (EFFSPW), in which the flexibility of machines and workers as well as the processing time, energy consumption and worker cost related factors are considered simultaneously. A hybrid evolutionary algorithm (HEA) is then presented to solve the proposed EFFSPW, where some effective operators and a new variable neighborhood search approach are designed. Comprehensive experiments including 54 benchmark instances of the EFFSPW are carried out, and Taguchi analysis is used to determine the best combination of key parameters for the HEA. Experimental results show that the proposed HEA can obtain better solutions for most of these benchmark instances compared to two other well-known algorithms, demonstrating its superior performance in terms of both solution quality and computational efficiency. (C) 2019 Elsevier Ltd. All rights reserved.
机译:经典的柔性流水车间调度问题(FFSP)仅考虑机器的灵活性。迄今为止,相关文献还没有研究具有工人灵活性的FFSP,这在实际制造系统中已广为人知。工人的灵活性可能会极大地影响生产效率和生产率。此外,随着环境污染和能源消耗的增加,制造商需要创新的方法来提高能源效率。在本文中,我们提出了一种具有工人灵活性的节能FFSP(EFFSPW),其中同时考虑了机器和工人的灵活性以及处理时间,能耗和工人成本的相关因素。然后提出了一种混合进化算法(HEA)来解决所提出的EFFSPW,其中设计了一些有效算子和一种新的可变邻域搜索方法。进行了包括EFFSPW的54个基准实例在内的综合实验,田口分析用于确定HEA关键参数的最佳组合。实验结果表明,与其他两种知名算法相比,所提出的HEA可以针对大多数这些基准实例获得更好的解决方案,从而在解决方案质量和计算效率方面都证明了其优越的性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号