首页> 外文期刊>Expert Systems with Application >DSPNet: Deep scale purifier network for dense crowd counting
【24h】

DSPNet: Deep scale purifier network for dense crowd counting

机译:DSPNet:用于密集人群计数的深度净化器网络

获取原文
获取原文并翻译 | 示例

摘要

Crowd counting has produced considerable concern in recent years. However, crowd counting in highly congested scenes is a challenging problem owing to scale variation. To remedy this issue, we propose a novel deep scale purifier network (DSPNet) that can encode multiscale features and reduce the loss of contextual information for dense crowd counting. Our proposed method has two strong points. First, the DSPNet model consists of a frontend and a backend. The frontend is a conventional deep convolutional neural network, while the unified deep neural network backend adopts a "maximal ratio combining" strategy to learn complementary scale information at different levels. The scale purifier module, which improves scale representations, can effectively fuse multiscale features. Second, DSPNet performs the whole RGB image-based inference to facilitate model learning and decrease contextual information loss. Our customized network is end-to-end and has a fully convolutional architecture. We demonstrate the generalization ability of our approach by cross-scene evaluation. Extensive experiments on three publicly available crowd counting benchmarks (i.e., UCF-QNRF, ShanghaiTech, and UCF_CC_50 datasets) show that our DSPNet delivers superior performance against state-of-the-art methods. (C) 2019 Elsevier Ltd. All rights reserved.
机译:人群计数近年来引起了极大的关注。但是,由于规模变化,在高度拥挤的场景中进行人群计数是一个具有挑战性的问题。为解决此问题,我们提出了一种新颖的深度净化器网络(DSPNet),该网络可以编码多尺度特征并减少用于密集人群计数的上下文信息的丢失。我们提出的方法有两个优点。首先,DSPNet模型由前端和后端组成。前端是常规的深度卷积神经网络,而统一的深度神经网络后端则采用“最大比例合并”策略来学习不同级别的互补尺度信息。秤净化器模块可以改善秤的表示形式,可以有效地融合多秤功能。其次,DSPNet执行整个基于RGB图像的推理,以促进模型学习并减少上下文信息丢失。我们的定制网络是端到端的,具有完全卷积的体系结构。我们通过跨场景评估证明了我们方法的泛化能力。在三个公开可用的人群计数基准(即UCF-QNRF,ShanghaiTech和UCF_CC_50数据集)上进行的广泛实验表明,我们的DSPNet具有优于最新方法的性能。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号