首页> 外文期刊>Expert Systems with Application >Human action recognition using double discriminative sparsity preserving projections and discriminant ridge-based classifier based on the GDWL-l1 graph
【24h】

Human action recognition using double discriminative sparsity preserving projections and discriminant ridge-based classifier based on the GDWL-l1 graph

机译:基于GDWL-l1图的双重区分稀疏保留投影和基于区分岭的分类器的人类动作识别

获取原文
获取原文并翻译 | 示例

摘要

Human action recognition is defined as determining the actions of humans happening in video sequences. Human action recognition is one of the interesting topics which can play important role in intelligence, surveillance and health protection systems' performance; the performance of human action recognition methods is a vital issue that has been focused on many recent papers. Subspace learning and classification steps can impress the performance of the human action recognition methods. Accordingly, in this paper, new subspace learning and classification algorithms are proposed for human action recognition. Notably, graphs play important role to describe the relationship of data but most of the graph based methods used Euclidean distance metric. To overcome it, a geodesic distance based weighted LASSO l1-graph (GDWL-l1 graph) is proposed to extract the between-class and within-class graphs. Then, double discriminative sparsity preserving projections (DDSPP) algorithm is introduced to map the high-dimensional data to a new discriminant low-dimensional space using these graphs in order to have better discrimination besides sparsity and locality preserving in the mapped space. Subspace learning using DDSPP algorithm leads to a discriminative and sparse low-dimensional space. At the end, a discriminant ridge-based classifier (DRC) is introduced to inherit the grouping effect of the ridge regression besides incorporating the geodesic distance by defining a criterion of the classification. Experimental results show the suitable performance of the proposed method on HMDB51 and UCF101 datasets which are as 66.41% and 92.46%, respectively. (C) 2019 Elsevier Ltd. All rights reserved.
机译:人体动作识别被定义为确定人在视频序列中发生的动作。识别人类行为是有趣的话题之一,可以在情报,监视和健康保护系统的性能中发挥重要作用。人体动作识别方法的性能是一个非常重要的问题,已经在许多最新论文中得到关注。子空间学习和分类步骤可以给人类动作识别方法留下深刻的印象。因此,本文提出了一种新的子空间学习和分类算法,用于人类动作识别。值得注意的是,图在描述数据关系方面起着重要作用,但是大多数基于图的方法都使用欧几里德距离度量。为了克服它,提出了基于测地距离的加权LASSO图(GDWL-l1图)来提取类间图和类内图。然后,引入双重判别稀疏性保留投影(DDSPP)算法,使用这些图将高维数据映射到新的判别性低维空间,以便除了在映射空间中保留稀疏性和局部性之外,还能更好地进行区分。使用DDSPP算法进行子空间学习会导致区分性和稀疏的低维空间。最后,引入了基于判别岭的分类器(DRC),以通过定义分类标准,并入测地距离,从而继承了岭回归的分组效果。实验结果表明,该方法在HMDB51和UCF101数据集上的合适性能分别为66.41%和92.46%。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号