首页> 外文期刊>Expert Systems with Application >Combined fuzzy clustering and firefly algorithm for privacy preserving in social networks
【24h】

Combined fuzzy clustering and firefly algorithm for privacy preserving in social networks

机译:模糊聚类和萤火虫算法相结合的社交网络隐私保护

获取原文
获取原文并翻译 | 示例

摘要

In recent years, an explosive growth of social networks has been made publicly available for understanding the behavior of users and data mining purposes. The main challenge in sharing the social network databases is protecting public released data from individual identification. The most common privacy preserving technique is anonymizing data by removing or changing some information, while the anonymized data should retain as much information as possible of the original data. K-anonymity and its extensions (e.g., L-diversity and T-closeness) have widely been used for data anonymization. The main drawback of the existing anonymity techniques is the lack of protection against attribute/link disclosure and similarity attacks. Moreover, they suffer from high amount of information loss in the released database. In order to overcome these drawbacks, this paper proposes a combined anonymizing algorithm based On K-member Fuzzy Clustering and Firefly Algorithm (KFCFA) to protect the anonymized database against identity disclosure, attribute disclosure, link disclosure, and similarity attacks, and significantly minimize the information loss. In KFCFA, at first, a modified K-member version of fuzzy c-means is utilized to create balanced clusters with at least K members in each cluster. Then, firefly algorithm is performed for further optimizing the primary clusters and anonymizing the network graph and data. To achieve this purpose, a constrained multi-objective function is introduced to simultaneously minimize the clustering error rate and the generated information loss, while satisfying the defined anonymity constraints. The proposed methodology can be utilized for both network graph structures and micro data. Simulation results over four social network databases from Facebook, Google+, Twitter and YouTube demonstrate the efficiency of the proposed KFCFA algorithm to minimize the information loss of the published data and graph, while satisfying K-anonymity, L-diversity and T-closeness conditions. (C) 2019 Elsevier Ltd. All rights reserved.
机译:近年来,为了了解用户的行为和数据挖掘的目的,已经公开提供了社交网络的爆炸性增长。共享社交网络数据库的主要挑战是保护公开发布的数据不被个人识别。最常见的隐私保护技术是通过删除或更改某些信息来匿名化数据,而匿名化数据应保留原始数据中尽可能多的信息。 K-匿名性及其扩展名(例如,L-多样性和T-紧密度)已广泛用于数据匿名化。现有匿名技术的主要缺点是缺乏针对属性/链接泄露和相似性攻击的保护。而且,它们在已发布的数据库中遭受大量信息丢失的困扰。为了克服这些缺点,本文提出了一种基于K成员模糊聚类和Firefly算法(KFCFA)的组合匿名算法,以保护匿名数据库免受身份泄露,属性泄露,链接泄露和相似性攻击,并最大程度地减少信息丢失。在KFCFA中,首先,使用模糊c均值的修改K成员版本来创建每个集群中至少具有K成员的平衡集群。然后,执行萤火虫算法,以进一步优化主群集并匿名化网络图和数据。为了实现此目的,引入了约束多目标函数,以在满足定义的匿名性约束的同时,将聚类错误率和生成的信息损失最小化。所提出的方法可以用于网络图结构和微数据。来自Facebook,Google +,Twitter和YouTube的四个社交网络数据库的仿真结果表明,所提出的KFCFA算法能够最大程度地降低已发布数据和图形的信息损失,同时满足K-匿名性,L-多样性和T-紧密度条件。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号