首页> 外文期刊>Expert Systems with Application >Ensemble belief rule base modeling with diverse attribute selection and cautious conjunctive rule for classification problems
【24h】

Ensemble belief rule base modeling with diverse attribute selection and cautious conjunctive rule for classification problems

机译:具有多种属性选择和谨慎结语规则的集成信念规则库建模

获取原文
获取原文并翻译 | 示例

摘要

Belief rule-based systems have demonstrated its advantages in solving complicated problems with uncertain information. However, the rule combinatorial explosion problem is still a great challenge for belief rule bases (BRBs) when a problem involves a large number of attributes, because existing attempts have not addressed this challenge adequately, e.g., utilization of single attribute selection method to downsize BRBs without considering its inherent weakness, or adjustment of referential values to optimize BRBs without attribute selection. Thus, inspired by ensemble learning, the objective of this paper is to propose an ensemble BRB modeling method to deal with classification problems. First, six attribute selection methods that have different advantages are introduced to select diverse sets of antecedent attributes for constructing multiple BRBs, and all of these BRBs are further trained by parameter learning for diverse belief rule-based systems. Second, due to the fact that each belief rule-based system has different importance and hardly satisfies the assumption of independence, a weight learning method is proposed to determine the weight of each belief rule-based system, and a new analytical cautious conjunctive rule (CCR) is deduced from the recursive CCR, that is suitable for the combination of non- independent individuals, to combine the outputs of all belief rule-based systems. Eight classification datasets from the well- known UCI database are adopted to verify the effectiveness of the proposed BRB modeling method in comparison with the belief rule-based systems constructed by single attribute selection, conventional fuzzy rule-based classifiers, and machine learning-based classifiers. (C) 2019 Elsevier Ltd. All rights reserved.
机译:基于信念规则的系统已经证明了其在解决信息不确定的复杂问题方面的优势。但是,当问题涉及大量属性时,规则组合爆炸问题对于信念规则库(BRB)仍然是一个很大的挑战,因为现有的尝试尚未充分解决此挑战,例如,利用单一属性选择方法来缩小BRB的大小无需考虑其固有的弱点,也无需调整参考值即可优化无属性的BRB。因此,受集成学习启发,本文的目的是提出一种用于处理分类问题的集成BRB建模方法。首先,介绍了六种具有不同优势的属性选择方法,以选择用于构造多个BRB的各种先验属性集,并通过参数学习进一步训练所有这些BRB,以用于基于不同信念规则的系统。其次,由于每个基于信念规则的系统具有不同的重要性并且几乎不能满足独立性的假设,因此提出了一种权重学习方法来确定每个基于信念规则的系统的权重,并提出了一种新的分析谨慎结语规则( CCR是从递归CCR推导而来的,适用于非独立个体的组合,以组合所有基于信念规则的系统的输出。与通过单属性选择,基于常规模糊规则的分类器和基于机器学习的分类器构建的基于信念规则的系统相比,采用了来自著名UCI数据库的八个分类数据集来验证所提出的BRB建模方法的有效性。 。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号