首页> 外文期刊>Expert Systems with Application >Community detection and influential node identification in complex networks using mathematical programming
【24h】

Community detection and influential node identification in complex networks using mathematical programming

机译:使用数学程序设计复杂网络中的社区检测和有影响力的节点识别

获取原文
获取原文并翻译 | 示例

摘要

Integer programming models for community detection in relational networks have diverse applications in different fields. From making our lives easier by improving search engine optimization to saving our lives by aiding in threat detection and disaster management, researches in this niche have added value to human experience and knowledge. Besides the community structure, the influential nodes or members in a complex network are highly effective at diffusing information quickly to others in the community. Prior research dealing with the use of optimization models for clustering networks has independently focused on detecting communities. In this research, we propose a new integer linear programming model to detect community structure in real-life networks and also identify the most influential node within each community. We validate the proposed model by testing it on a well-established community network. Further, the performance of the proposed model is evaluated by comparing it with the existing best performing optimization model as well as three heuristic approaches for community detection. The experimental results indicate that in most cases the proposed integer programming model performs better than the existing optimization model with respect to modularity, Silhouette coefficient and computational time. Besides, our model yields superior Silhouette and competitive modularity values compared to the heuristic approaches in many cases. (C) 2019 Elsevier Ltd. All rights reserved.
机译:用于关系网络中社区检测的整数编程模型在不同领域中具有多种应用。从通过改进搜索引擎优化使我们的生活更轻松到通过帮助进行威胁检测和灾难管理来挽救我们的生命,对这一小生境的研究为人类的经验和知识增加了价值。除了社区结构之外,复杂网络中有影响力的节点或成员还可以高效地将信息快速传播到社区中的其他人。先前关于使用优化模型进行聚类网络的研究已经独立地专注于检测社区。在这项研究中,我们提出了一个新的整数线性规划模型,以检测现实生活网络中的社区结构,并确定每个社区内影响最大的节点。我们通过在完善的社区网络上对其进行测试来验证所提出的模型。此外,通过将其与现有的最佳性能优化模型以及三种用于社区检测的启发式方法进行比较,来评估所提出模型的性能。实验结果表明,在大多数情况下,就模块性,轮廓系数和计算时间而言,所提出的整数规划模型的性能要优于现有的优化模型。此外,在许多情况下,与启发式方法相比,我们的模型还具有出众的Silhouette和竞争性模块化值。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号