首页> 外文期刊>Expert Systems with Application >Benchmarking unsupervised near-duplicate image detection
【24h】

Benchmarking unsupervised near-duplicate image detection

机译:基准无监督的近重复图像检测

获取原文
获取原文并翻译 | 示例

摘要

Unsupervised near-duplicate detection has many practical applications ranging from social media analysis and web-scale retrieval, to digital image forensics. It entails running a threshold-limited query on a set of descriptors extracted from the images, with the goal of identifying all possible near-duplicates, while limiting the false positives due to visually similar images. Since the rate of false alarms grows with the dataset size, a very high specificity is thus required, up to 1-10(-9) for realistic use cases; this important requirement, however, is often overlooked in literature. In recent years, descriptors based on deep convolutional neural networks have matched or surpassed traditional feature extraction methods in content-based image retrieval tasks. To the best of our knowledge, ours is the first attempt to establish the performance range of deep learning-based descriptors for unsupervised near-duplicate detection on a range of datasets, encompassing a broad spectrum of near-duplicate definitions. We leverage both established and new benchmarks, such as the Mir-Flick Near-Duplicate (MFND) dataset, in which a known ground truth is provided for all possible pairs over a general, large scale image collection. To compare the specificity of different descriptors, we reduce the problem of unsupervised detection to that of binary classification of near-duplicate vs. not-near-duplicate images. The latter can be conveniently characterized using Receiver Operating Curve (ROC). Our findings in general favor the choice of fine-tuning deep convolutional networks, as opposed to using off-the-shelf features, but differences at high specificity settings depend on the dataset and are often small. The best performance was observed on the MFND benchmark, achieving 96% sensitivity at a false positive rate of 1.43 x 10(-6 )(C) 2019 Elsevier Ltd. All rights reserved.
机译:无监督的近重复检测具有许多实际应用,从社交媒体分析和Web规模检索到数字图像取证。它需要对从图像中提取的一组描述符运行阈值限制查询,目的是识别所有可能的近重复项,同时限制由于视觉上相似的图像而导致的误报。由于虚假警报的发生率随数据集大小的增加而增加,因此需要非常高的特异性,对于实际用例而言,其误报率最高为1-10(-9)。但是,这一重要要求在文献中经常被忽略。近年来,基于深度卷积神经网络的描述符在基于内容的图像检索任务中已经达到或超越了传统特征提取方法。据我们所知,我们是首次尝试建立基于深度学习的描述符的性能范围,以在一系列数据集上进行无监督的近重复检测,涵盖了广泛的近重复定义。我们利用既定基准和新基准,例如Mir-Flick近重复(MFND)数据集,在该数据集中,为大型,大型图像集合中的所有可能对提供了已知的地面真实情况。为了比较不同描述符的特异性,我们将无监督检测的问题减少为近重复图像与非重复图像的二进制分类问题。可以使用接收器工作曲线(ROC)方便地表征后者。我们的发现总体上倾向于选择微调深度卷积网络,而不是使用现成的特征,但是高特异性设置下的差异取决于数据集,并且通常很小。在MFND基准上观察到最佳性能,以1.43 x 10(-6)(C)2019 Elsevier Ltd的误报率实现96%的灵敏度。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号